3 Tech Giants Quietly Investing in Synthetic Biology

Posted: Published on January 7th, 2015

This post was added by Dr P. Richardson

The introduction and widespread adoption of fun new gadgets, games, and services in the last 15 years has provided billions of dollars of revenues and profits to the technology companies innovative (and lucky) enough to grab your attention.

So if I asked what you think will fuel the growth of today's technology giants in the next 15 years, what would your answer be? You might say familiar or trendy terms, such as user growth or the Internet of Things. Or perhaps that the companies with the most innovative products and services will reign king in tomorrow's tech markets. And while those are likely partially correct answers, there's a tremendous amount of growth to be had from a rather unlikely source.

It might be difficult to believe that companies that have traditionally relied on silicon chips, mobile apps, and lines of software code could profit from something as seemingly disconnected as making biological engineering as predictable as traditional engineering fields, but a closer look into research and development spending hints that it may not be that far-fetched after all. Why are Autodesk , Intel , and Microsoft quietly investing in synthetic biology, and what could it mean for investors?

Project Cyborg seeks to transform the design of living systems Computer-aided design, or CAD, software has revolutionized how our world is built. But the seamless efficiency and accuracy won't be relegated to digital movies, buildings, engine parts, and airplanes for long. Autodesk is investing in bioCAD tools for synthetic biology applications through Project Cyborg, which is part of the company's Bio/Nano/Programmable Matter Group. The team is led by Carlos Olguin, whom I interviewed in 2014 , and is also home to Andrew Hessel, one of the field's most infectious thought leaders and the guest speaker at The Motley Fool's annual writers' conference last September.

Autodesk Chief Technology Officer Jeff Kowalski considers design tools for synthetic biology a more lucrative opportunity than even 3D printing. That's big talk, especially considering that the company plans to invest $100 million into 3D printing start-ups over the next several years, but he might be right. What is currently referred to as the bioCAD industry is comprised of glorified text editors for building DNA, although it is already beginning to replace less efficient protocols that are widely used in biology laboratories throughout the world. That opportunity alone is worth several billion dollars per year.

Autodesk has stationed its Bio/Nano/Programmable matter research group in a spectacular facility on the San Francisco Bay. Image source: Author.

But Autodesk has larger ambitions to capture an even bigger opportunity. An actual CAD program would allow researchers to design virtual organisms from DNA strand to cell chassis, test their behavior in virtual environments, and model changes to biological systems without lifting a pipette. Researchers could accurately predict the function of a cell before it was built, similar to how virtual airplanes are expected to fly when the first prototype is built. Of course, there is a long way to go before we can fine-tune our understanding of complex biological systems, but even basic early tools could help Autodesk diversify and expand its $2.3 billion in annual revenue. Better yet, digitizing life could become a major revenue source for the company by the end of the decade.

Fish in a laboratory Another way to make biology more predictable is to reduce human error and weed out noise in experimental data. Like it or not, most published research is actually nonsense, or at the very least, unable to be reproduced. Amgen and Bayer recently attempted to reproduce the results from landmark cancer biology studies. That should have been as simple as following the exact protocols in each paper, but Amgen could only recreate 11% of the results, while Bayer enjoyed a 25% success rate . In some instances, the original researchers could not even recreate the results from their own work! That's pathetic considering the majority of research surveyed received federal funding and/or was used as the basis for larger clinical trials.

Intel believes a better solution is to follow each experiment from start to finish with smart machines. Autodesk wants to digitize life; Intel wants to digitize research. So, with the help of Eric Klavins' synthetic biology laboratory at the University of Washington, the company is testing a system that tracks everything that occurs in the laboratory with cameras, outfits all equipment with smart sensors, and designs machine-learning protocols that allow computers to make real-time suggestions for experiment parameters. Known as The Aquarium Project, Intel is studying the behaviors of real researchers in the lab (the "fish") to develop a smart system to make biology research more reproducible.

View post:
3 Tech Giants Quietly Investing in Synthetic Biology

Related Posts
This entry was posted in Biology. Bookmark the permalink.

Comments are closed.