PUBLIC RELEASE DATE:
13-Aug-2014
Contact: Lucy Handford media@monash.edu Monash University
A cure for a range of blood disorders and immune diseases is in sight, according to scientists who have unravelled the mystery of stem cell generation.
The Australian study, led by researchers at the Australian Regenerative Medicine Institute (ARMI) at Monash University and the Garvan Institute of Medical Research, is published today in Nature. It identifies for the first time mechanisms in the body that trigger hematopoietic stem cell (HSC) production.
Found in the bone marrow and in umbilical cord blood, HSCs are critically important because they can replenish the body's supply of blood cells. Leukemia patients have been successfully treated using HSC transplants, but medical experts believe blood stem cells have the potential to be used more widely.
Lead researcher Professor Peter Currie, from ARMI explained that understanding how HSCs self-renew to replenish blood cells is a "Holy Grail" of stem cell biology.
"HSCs are one of the best therapeutic tools at our disposal because they can make any blood cell in the body. Potentially we could use these cells in many more ways than current transplantation strategies to treat serious blood disorders and diseases, but only if we can figure out how they are generated in the first place. Our study brings this possibility a step closer," he said.
A key stumbling block to using HSCs more widely has been an inability to produce them in the laboratory setting. The reason for this, suggested from previous research, is that a molecular 'switch' may also be necessary for HSC formation, though the mechanism responsible has remained a mystery, until now.
In this latest study, ARMI researchers observed cells in the developing zebra fish - a tropical freshwater fish known for its regenerative abilities and optically clear embryos - to gather new information on the signalling process responsible for HSC generation.
Original post:
Cell discovery brings blood disorder cure closer