In 1944, a Columbia University doctoral student in genetics named Evelyn Witkin made a fortuitous mistake. During her first experiment in a laboratory at Cold Spring Harbor, in New York, she accidentally irradiated millions of E. coli with a lethal dose of ultraviolet light. When she returned the following day to check on the samples, they were all deadexcept for one, in which four bacterial cells had survived and continued to grow. Somehow, those cells were resistant to UV radiation. To Witkin, it seemed like a remarkably lucky coincidence that any cells in the culture had emerged with precisely the mutation they needed to surviveso much so that she questioned whether it was a coincidence at all.
Original story reprinted with permission from Quanta Magazine, an editorially independent publication of the Simons Foundation whose mission is to enhance public understanding of science by covering research developments and trends in mathematics and the physical and life sciences.
For the next two decades, Witkin sought to understand how and why these mutants had emerged. Her research led her to what is now known as the SOS response, a DNA repair mechanism that bacteria employ when their genomes are damaged, during which dozens of genes become active and the rate of mutation goes up. Those extra mutations are more often detrimental than beneficial, but they enable adaptations, such as the development of resistance to UV or antibiotics.
The question that has tormented some evolutionary biologists ever since is whether nature favored this arrangement. Is the upsurge in mutations merely a secondary consequence of a repair process inherently prone to error? Or, as some researchers claim, is the increase in the mutation rate itself an evolved adaptation, one that helps bacteria evolve advantageous traits more quickly in stressful environments?
The scientific challenge has not just been to demonstrate convincingly that harsh environments cause nonrandom mutations. It has also been to find a plausible mechanism consistent with the rest of molecular biology that could make lucky mutations more likely. Waves of studies in bacteria and more complex organisms have sought those answers for decades.
The latest and perhaps best answerfor explaining some kinds of mutations, anywayhas emerged from studies of yeast, as reported in June in PLOS Biology. A team led by Jonathan Houseley, a specialist in molecular biology and genetics at the Babraham Institute in Cambridge, proposed a mechanism that drives more mutation specifically in regions of the yeast genome where it could be most adaptive.
Its a totally new way that the environment can have an impact on the genome to allow adaptation in response to need. It is one of the most directed processes weve seen yet, said Philip Hastings, professor of molecular and human genetics at Baylor College of Medicine, who was not involved in the Houseley groups experiments. Other scientists contacted for this story also praised the work, though most cautioned that much about the controversial idea was still speculative and needed more support.
Rather than asking very broad questions like are mutations always random? I wanted to take a more mechanistic approach, Houseley said. He and his colleagues directed their attention to a specific kind of mutation called copy number variation. DNA often contains multiple copies of extended sequences of base pairs or even whole genes. The exact number can vary among individuals because, when cells are duplicating their DNA before cell division, certain mistakes can insert or delete copies of gene sequences. In humans, for instance, 5 to 10 percent of the genome shows copy number variation from person to personand some of these variations have been linked to cancer, diabetes, autism and a host of genetic disorders. Houseley suspected that in at least some cases, this variation in the number of gene copies might be a response to stresses or hazards in the environment.
Jonathan Houseley leads a team that studies genome change at the Babraham Institute in Cambridge. Based on their studies of yeast, they recently proposed a mechanism that would increase the odds for adaptive mutations in genes that are actively responding to environmental challenges.
Jon Houseley/QUANTA MAGAZINE
In 2015, Houseley and his colleagues described a mechanism by which yeast cells seemed to be driving extra copy number variation in genes associated with ribosomes, the parts of a cell that synthesize proteins. However, they did not prove that this increase was a purposefully adaptive response to a change or constraint in the cellular environment. Nevertheless, to them it seemed that the yeast was making more copies of the ribosomal genes when nutrients were abundant and the demand for making protein might be higher.
Houseley therefore decided to test whether similar mechanisms might act on genes more directly activated by hazardous changes in the environment. In their 2017 paper, he and his team focused on CUP1, a gene that helps yeast resist the toxic effects of environmental copper. They found that when yeast was exposed to copper, the variation in the number of copies of CUP1 in the cells increased. On average, most cells had fewer copies of the gene, but the yeast cells that gained more copiesabout 10 percent of the total population became more resistant to copper and flourished. The small number of cells that did the right thing, Houseley said, were at such an advantage that they were able to outcompete everything else.
But that change did not in itself mean much: If the environmental copper was causing mutations, then the change in CUP1 copy number variation might have been no more than a meaningless consequence of the higher mutation rate. To rule out that possibility, the researchers cleverly re-engineered the CUP1 gene so that it would respond to a harmless, nonmutagenic sugar, galactose, instead of copper. When these altered yeast cells were exposed to galactose, the variation in their number of copies of the gene changed, too.
The cells seemed to be directing greater variation to the exact place in their genome where it would be useful. After more work, the researchers identified elements of the biological mechanism behind this phenomenon. It was already known that when cells replicate their DNA, the replication mechanism sometimes stalls. Usually the mechanism can restart and pick up where it left off. When it cant, the cell can go back to the beginning of the replication process, but in doing so, it sometimes accidentally deletes a gene sequence or makes extra copies of it. That is what causes normal copy number variation. But Houseley and his team made the case that a combination of factors makes these copying errors especially likely to hit genes that are actively responding to environmental stresses, which means that they are more likely to show copy number variation.
The key point is that these effects center on genes responding to the environment, and that they could give natural selection extra opportunities to fine-tune which levels of gene expression might be optimal against certain challenges. The results seem to present experimental evidence that a challenging environment could galvanize cells into controlling those genetic changes that would best improve their fitness. They may also seem reminiscent of the outmoded, pre-Darwinian ideas of the French naturalist Jean-Baptiste Lamarck, who believed that organisms evolved by passing their environmentally acquired characteristics along to their offspring. Houseley maintains, however, that this similarity is only superficial.
What we have defined is a mechanism that has arisen entirely through Darwinian selection of random mutations to give a process that stimulates nonrandom mutations at useful sites, Houseley said. It is not Lamarckian adaptation. It just achieves some of the same ends without the problems involved with Lamarckian adaptation.
Ever since 1943, when the microbiologist Salvador Luria and the biophysicist Max Delbrck showed with Nobel prize-winning experiments that mutations in E. coli occur randomly, observations like the bacterial SOS response have made some biologists wonder whether there might be important loopholes to that rule. For example, in a controversial paper published in Nature in 1988, John Cairns of Harvard and his team found that when they placed bacteria that could not digest the milk sugar lactose in an environment where that sugar was the sole food source, the cells soon evolved the ability to convert the lactose into energy. Cairns argued that this result showed that cells had mechanisms to make certain mutations preferentially when they would be beneficial.
Budding yeast (S. cerevisiae) grow as colonies on this agar plate. If certain recent research is correct, a mechanism that helps to repair DNA damage in these cells may also promote more adaptive mutations, which could help the cells to evolve more quickly under harsh circumstances.
Jon Houseley/QUANTA MAGAZINE
Experimental support for that specific idea eventually proved lacking, but some biologists were inspired to become proponents of a broader theory that has come to be known as adaptive mutation. They believe that even if cells cant direct the precise mutation needed in a certain environment, they can adapt by elevating their mutation rate to promote genetic change.
The work of the Houseley team seems to bolster the case for that position. In the yeast mechanism theres not selection for a mechanism that actually says, This is the gene I should mutate to solve the problem, said Patricia Foster, a biologist at Indiana University. It shows that evolution can get speeded up.
Hastings at Baylor agreed, and praised the fact that Houseleys mechanism explains why the extra mutations dont happen throughout the genome. You need to be transcribing a gene for it to happen, he said.
Adaptive mutation theory, however, finds little acceptance among most biologists, and many of them view the original experiments by Cairns and the new ones by Houseley skeptically. They argue that even if higher mutation rates yield adaptations to environmental stress, proving that the higher mutation rates are themselves an adaptation to stress remains difficult to demonstrate convincingly. The interpretation is intuitively attractive, said John Roth, a geneticist and microbiologist at the University of California, Davis, but I dont think its right. I dont believe any of these examples of stress-induced mutagenesis are correct. There may be some other non-obvious explanation for the phenomenon.
I think [Houseleys work] is beautiful and relevant to the adaptive mutation debate, said Paul Sniegowski, a biologist at the University of Pennsylvania. But in the end, it still represents a hypothesis. To validate it more certainly, he added, theyd have to test it in the way an evolutionary biologist wouldby creating a theoretical model and determining whether this adaptive mutability could evolve within a reasonable period, and then by challenging populations of organisms in the lab to evolve a mechanism like this.
Notwithstanding the doubters, Houseley and his team are persevering with their research to understand its relevance to cancer and other biomedical problems. The emergence of chemotherapy-resistant cancers is commonplace and forms a major barrier to curing the disease, Houseley said. He thinks that chemotherapy drugs and other stresses on tumors may encourage malignant cells to mutate further, including mutations for resistance to the drugs. If that resistance is facilitated by the kind of mechanism he explored in his work on yeast, it could very well present a new drug target. Cancer patients might be treated both with normal courses of chemotherapy and with agents that would inhibit the biochemical modifications that make resistance mutations possible.
We are actively working on that, Houseley said, but its still in the early days.
Original story reprinted with permission from Quanta Magazine, an editorially independent publication of the Simons Foundation whose mission is to enhance public understanding of science by covering research developments and trends in mathematics and the physical and life sciences.
Read the original post:
Bacteria May Rig Their DNA to Speed Up Evolution - WIRED
- Avera Medical Minute AMcK: Researching the human genome [Last Updated On: April 10th, 2014] [Originally Added On: April 10th, 2014]
- Artificial Reproductive Technology: Constructing a Dystopia [Last Updated On: April 10th, 2014] [Originally Added On: April 10th, 2014]
- Human genetics - Wikipedia, the free encyclopedia [Last Updated On: April 10th, 2014] [Originally Added On: April 10th, 2014]
- Wellcome Trust Centre for Human Genetics - Video [Last Updated On: April 10th, 2014] [Originally Added On: April 10th, 2014]
- Human Genetics Biology Project - Video [Last Updated On: April 10th, 2014] [Originally Added On: April 10th, 2014]
- Dame Bridget Ogilvie: Women in Science - Video [Last Updated On: April 15th, 2014] [Originally Added On: April 15th, 2014]
- Human Genetics | Buzzle.com [Last Updated On: April 16th, 2014] [Originally Added On: April 16th, 2014]
- Refining language for chromosomes [Last Updated On: April 17th, 2014] [Originally Added On: April 17th, 2014]
- Refining the language for chromosomes [Last Updated On: April 17th, 2014] [Originally Added On: April 17th, 2014]
- CU system resets health care with $63M personalized medicine division [Last Updated On: April 21st, 2014] [Originally Added On: April 21st, 2014]
- Human Genetics and Personalized Medicine, Dr. David Cox - Video [Last Updated On: April 21st, 2014] [Originally Added On: April 21st, 2014]
- Applying math to biology: Software identifies disease-causing mutations in undiagnosed illnesses [Last Updated On: April 22nd, 2014] [Originally Added On: April 22nd, 2014]
- Software Identifies Gene Mutations in 3 Undiagnosed Children [Last Updated On: April 22nd, 2014] [Originally Added On: April 22nd, 2014]
- International collaboration unravels novel mechanism for neurological disorder [Last Updated On: April 25th, 2014] [Originally Added On: April 25th, 2014]
- Mount Sinai Researchers Identify Genetic Alterations in Shared Biological Pathways as Major Risk Factor for Autism ... [Last Updated On: April 25th, 2014] [Originally Added On: April 25th, 2014]
- Dive into Human Genetics - Video [Last Updated On: April 26th, 2014] [Originally Added On: April 26th, 2014]
- A new syndrome caused by mutations in AHDC1 [Last Updated On: May 2nd, 2014] [Originally Added On: May 2nd, 2014]
- Exploring genetics behind Alzheimer's resiliency [Last Updated On: May 3rd, 2014] [Originally Added On: May 3rd, 2014]
- Human genetics - An Introduction to Genetic Analysis ... [Last Updated On: May 4th, 2014] [Originally Added On: May 4th, 2014]
- Human Genetics - Estrella Mountain Community College [Last Updated On: May 5th, 2014] [Originally Added On: May 5th, 2014]
- What Is Human Genetics: How Important Is It To Science Today? [Last Updated On: May 9th, 2014] [Originally Added On: May 9th, 2014]
- Human Genetics Project - Video [Last Updated On: May 9th, 2014] [Originally Added On: May 9th, 2014]
- Journal of Human Genetics - Nature [Last Updated On: May 16th, 2014] [Originally Added On: May 16th, 2014]
- CSHL Keynote: Dr. Peter Donnelly, Wellcome Trust Centre for Human Genetics - Video [Last Updated On: May 16th, 2014] [Originally Added On: May 16th, 2014]
- New genetic sequencing methods mean quicker, cheaper, and accurate embryo screening [Last Updated On: May 31st, 2014] [Originally Added On: May 31st, 2014]
- Researchers take a major step towards better diagnosis and treatment of osteoporosis [Last Updated On: May 31st, 2014] [Originally Added On: May 31st, 2014]
- Poor coverage of specific gene sets in exome sequencing gives cause for concern [Last Updated On: June 2nd, 2014] [Originally Added On: June 2nd, 2014]
- Osteoporosis: Genetic researchers take major step towards better diagnosis, treatment [Last Updated On: June 2nd, 2014] [Originally Added On: June 2nd, 2014]
- Deletions and duplications in the exome can help pinpoint cause of unexplained genetic diseases [Last Updated On: June 2nd, 2014] [Originally Added On: June 2nd, 2014]
- New genes involved in food preferences will revolutionize diets and improve health [Last Updated On: June 2nd, 2014] [Originally Added On: June 2nd, 2014]
- ESHG14 Update on Ion PII and Ion Chef from Andy Felton - Video [Last Updated On: June 4th, 2014] [Originally Added On: June 4th, 2014]
- Ancient Human-Chimp Link Pushed Back Millions of Years [Last Updated On: June 22nd, 2014] [Originally Added On: June 22nd, 2014]
- Chinakov Vs. The Hidden Ep 4: Lets Play Some Xbox - Video [Last Updated On: June 22nd, 2014] [Originally Added On: June 22nd, 2014]
- Reaction to the $1,000 Genome [Last Updated On: June 26th, 2014] [Originally Added On: June 26th, 2014]
- Tragicom Studios Movie Explores Link between the Technology Industry and the Rise in Autism with Futuristic Eugenics ... [Last Updated On: June 26th, 2014] [Originally Added On: June 26th, 2014]
- 09 Prof. Richard Gold, Esq. - Video [Last Updated On: June 29th, 2014] [Originally Added On: June 29th, 2014]
- John Maunsell Takes Helm of Neuroscience Institute at University of Chicago [Last Updated On: July 2nd, 2014] [Originally Added On: July 2nd, 2014]
- Illumina Expands in Europe on 3 NIPT Deals - Analyst Blog [Last Updated On: July 2nd, 2014] [Originally Added On: July 2nd, 2014]
- GHOST STORY (The Hidden) - Video [Last Updated On: July 6th, 2014] [Originally Added On: July 6th, 2014]
- HOW TO MOONSHINE (The Hidden) - Video [Last Updated On: July 9th, 2014] [Originally Added On: July 9th, 2014]
- Will Genomics Soon Explain the Human Brain Gain? [Last Updated On: July 11th, 2014] [Originally Added On: July 11th, 2014]
- WIGGLE WIGGLE WIGGLE (The Hidden) - Video [Last Updated On: July 11th, 2014] [Originally Added On: July 11th, 2014]
- The Hidden Source : Beta - 1 V.S.1 me Brah! - w/ Friend (Short footage) - Video [Last Updated On: July 18th, 2014] [Originally Added On: July 18th, 2014]
- Three parent babies banned from knowing 'second mothers' [Last Updated On: July 23rd, 2014] [Originally Added On: July 23rd, 2014]
- 2014 ASHG Annual Meeting Schedule Overview - Video [Last Updated On: July 24th, 2014] [Originally Added On: July 24th, 2014]
- Pinpointing genetic links to schizophrenia may open doors to better treatment [Last Updated On: July 26th, 2014] [Originally Added On: July 26th, 2014]
- Factoring in Mendel and Human Genetics - Video [Last Updated On: July 27th, 2014] [Originally Added On: July 27th, 2014]
- University of Maryland Schools of Dentistry and Medicine receive NIH grant [Last Updated On: July 29th, 2014] [Originally Added On: July 29th, 2014]
- Mosaicism: Study clarifies parents as source of new disease mutations [Last Updated On: July 31st, 2014] [Originally Added On: July 31st, 2014]
- Human Genetics and the Image of God - Video [Last Updated On: August 7th, 2014] [Originally Added On: August 7th, 2014]
- Bigfoot and yeti, as elusive as ever [Last Updated On: August 8th, 2014] [Originally Added On: August 8th, 2014]
- Fruit Flies Used To Unlock Mysteries Of Human Diabetes [Last Updated On: August 11th, 2014] [Originally Added On: August 11th, 2014]
- 23andMe Announces Agreement with Pfizer Inc. to Research Genetics of Ulcerative Colitis and Crohn's Disease [Last Updated On: August 12th, 2014] [Originally Added On: August 12th, 2014]
- Penn's Basser Research Center for BRCA Names BRCA1 Founder Mary-Claire King Winner of the 2014 Basser Global Prize [Last Updated On: August 12th, 2014] [Originally Added On: August 12th, 2014]
- Announcing Speakers at BioConference Live Genetics and Genomics 2014 [Last Updated On: August 19th, 2014] [Originally Added On: August 19th, 2014]
- MARC travel awards announced for: American Society of Human Genetics 2014 Annual Meeting [Last Updated On: August 28th, 2014] [Originally Added On: August 28th, 2014]
- Human Genetics - The Complexity of Living Cells Debunks Evolution. - Video [Last Updated On: September 1st, 2014] [Originally Added On: September 1st, 2014]
- ASHG and NHGRI award first genetics and education fellowship [Last Updated On: September 2nd, 2014] [Originally Added On: September 2nd, 2014]
- ASHG and NHGRI award genetics and public policy fellowship [Last Updated On: September 2nd, 2014] [Originally Added On: September 2nd, 2014]
- Mapping the DNA Sequence of Ashkenazi Jews [Last Updated On: September 10th, 2014] [Originally Added On: September 10th, 2014]
- Google Continues To Build Upon Its Life Sciences Ecosystem [Last Updated On: September 12th, 2014] [Originally Added On: September 12th, 2014]
- Scientists discover genetic link to autism, developmental disorders [Last Updated On: September 15th, 2014] [Originally Added On: September 15th, 2014]
- Scientists discover possible genetic link to autism, developmental disorders [Last Updated On: September 15th, 2014] [Originally Added On: September 15th, 2014]
- Human Genetics DNA and RNA.mp4 - Video [Last Updated On: September 18th, 2014] [Originally Added On: September 18th, 2014]
- Dogs, humans attack cancer together [Last Updated On: September 19th, 2014] [Originally Added On: September 19th, 2014]
- Cancer treatment for dogs could one day save humans [Last Updated On: September 19th, 2014] [Originally Added On: September 19th, 2014]
- Synthetic sperm protein raises the chance for successful in vitro fertilization [Last Updated On: September 30th, 2014] [Originally Added On: September 30th, 2014]
- Gene Interacts with Stress and Leads to Heart Disease in Some People [Last Updated On: October 1st, 2014] [Originally Added On: October 1st, 2014]
- ASHG Launches Scientific EventPilot Meeting App with 3,500 Offline Abstracts for the Largest Human Genetics Meeting ... [Last Updated On: October 1st, 2014] [Originally Added On: October 1st, 2014]
- Human genetics of malaria has uncovered some new clues about susceptibility to severe malaria - Video [Last Updated On: October 4th, 2014] [Originally Added On: October 4th, 2014]
- How Iceland's Genealogy Obsession Leads to Scientific Breakthroughs [Last Updated On: October 8th, 2014] [Originally Added On: October 8th, 2014]
- Dartmouth Researchers Develop Reproducibility Score for SNPs Associated with Human Disease in GWAS [Last Updated On: October 8th, 2014] [Originally Added On: October 8th, 2014]
- Researchers develop reproducibility score for SNPs associated with human disease in GWAS [Last Updated On: October 8th, 2014] [Originally Added On: October 8th, 2014]
- Moore Foundation Selects Matthew Stephens for Data-Driven-Discovery Grant [Last Updated On: October 9th, 2014] [Originally Added On: October 9th, 2014]
- Reproducibility score for SNPs associated with human disease in GWAS [Last Updated On: October 9th, 2014] [Originally Added On: October 9th, 2014]
- Multiple neurodevelopmental disorders have a common molecular cause [Last Updated On: October 9th, 2014] [Originally Added On: October 9th, 2014]
- Human Genetics Molecular Biology of Gene - Video [Last Updated On: October 10th, 2014] [Originally Added On: October 10th, 2014]
- Human genetics : gel electrophoresis - Video [Last Updated On: October 11th, 2014] [Originally Added On: October 11th, 2014]
- Giant gene banks take on disease [Last Updated On: October 14th, 2014] [Originally Added On: October 14th, 2014]
- Gene duplications associated with autism evolved recently in human history [Last Updated On: October 19th, 2014] [Originally Added On: October 19th, 2014]