Early Plant Life
A diverse array of seedless plants still populate and thrive in the world today, particularly in moist environments.
Describe the pervasiveness of seedless plants during the history of the kingdom Plantae
An incredible variety of seedless plants populates the terrestrial landscape. Mosses may grow on a tree trunk and horsetails may display their jointed stems and spindly leaves across the forest floor. Today, however, seedless plants represent only a small fraction of the plants in our environment. The kingdom Plantae constitutes a large and varied group of organisms with more than 300,000 species of cataloged plants. Of these, more than 260,000 are seed plants. However, three hundred million years ago, seedless plants dominated the landscape and grew in the enormous swampy forests of the Carboniferous period. Their decomposition created large deposits of coal that we mine today.
Horsetails are seedless plants: Seedless plants, like these horsetails (Equisetum sp.), thrive in damp, shaded environments under a tree canopy where dryness is rare.
Current evolutionary thought holds that all plants, green algae as well as land dwellers, are monophyletic; that is, they are descendants of a single common ancestor. The evolutionary transition from water to land imposed severe constraints on plants. They had to develop strategies: to avoid drying out, to disperse reproductive cells in air, for structural support, and for capturing and filtering sunlight. While seed plants developed adaptations that allowed them to populate even the most arid habitats on Earth, full independence from water did not happen in all plants. Most seedless plants still require a moist environment.
Seedless plants are classified into three main categories: green algae, seedless non-vascular plants, and seedless vascular plants. Seedless non-vascular plants (bryophytes), such as mosses, are the group of plants that are the closest extant relative of early terrestrial plants. Seedless vascular plants include horsetails and ferns.
The geologic periods of the Paleozoic are marked by changes in the plant life that inhabited the earth.
Summarize the development of adaptations in land plants
No discussion of the evolution of plants on land can be undertaken without a brief review of the timeline of the geological eras. The early era, known as the Paleozoic, is divided into six periods. It starts with the Cambrian period, followed by the Ordovician, Silurian, Devonian, Carboniferous, and Permian. The major event to mark the Ordovician, more than 500 million years ago, was the colonization of land by the ancestors of modern land plants. Fossilized cells, cuticles, and spores of early land plants have been dated as far back as the Ordovician period in the early Paleozoic era. The evolution of plants occurred by a gradual development of novel structures and reproduction mechanisms. Embryo protection developed prior to the development of vascular plants which, in turn, evolved before seed plants and flowering plants. The oldest-known vascular plants have been identified in deposits from the Devonian. One of the richest sources of information is the Rhynie chert, a sedimentary rock deposit found in Rhynie, Scotland, where embedded fossils of some of the earliest vascular plants have been identified.
The Rhynie chert sedimentary rock deposit: This Rhynie chert contains fossilized material from vascular plants. The area inside the circle contains bulbous underground stems called corms and root-like structures called rhizoids.
Gradual evolution of land plants: The adaptation of plants to life on land occurred gradually through the stepwise development of physical structures and reproduction mechanisms
How organisms acquired traits that allow them to colonize new environments, and how the contemporary ecosystem is shaped, are fundamental questions of evolution. Paleobotany (the study of extinct plants) addresses these questions through the analysis of fossilized specimens retrieved from field studies, reconstituting the morphology of organisms that disappeared long ago. Paleobotanists trace the evolution of plants by following the modifications in plant morphology, which sheds light on the connection between existing plants by identifying common ancestors that display the same traits. This field seeks to find transitional species that bridge gaps in the path to the development of modern organisms. Paleobotanists collect fossil specimens in the field and place them in the context of the geological sediments and other fossilized organisms surrounding them.
Paleobotanists distinguish between extinct species, as fossils, and extant species, which are still living. The extinct vascular plants, classified as zosterophylls and trimerophytes, most probably lacked true leaves and roots, forming low vegetation mats similar in size to modern-day mosses, although some trimetophytes could reach one meter in height. The later genus Cooksonia, which flourished during the Silurian, has been extensively studied from well-preserved examples. Imprints of Cooksonia show slender, branching stems ending in what appear to be sporangia. From the recovered specimens, it is not possible to establish for certain whether Cooksonia possessed vascular tissues. Fossils indicate that by the end of the Devonian period, ferns, horsetails, and seed plants populated the landscape, giving rising to trees and forests. This luxuriant vegetation helped enrich the atmosphere in oxygen, making it easier for air-breathing animals to colonize dry land. Plants also established early symbiotic relationships with fungi, creating mycorrhizae: a relationship in which the fungal network of filaments increases the efficiency of the plant root system. The plants provide the fungi with byproducts of photosynthesis.
Plants adapted to the dehydrating land environment through the development of new physical structures and reproductive mechanisms.
Discuss how lack of water in the terrestrial environment led to significant adaptations in plants
As organisms adapted to life on land, they had to contend with several challenges in the terrestrial environment. The cell s interior is mostly water: in this medium, small molecules dissolve and diffuse and the majority of the chemical reactions of metabolism take place. Desiccation, or drying out, is a constant danger for organisms exposed to air. Even when parts of a plant are close to a source of water, the aerial structures are prone to desiccation. Water also provides buoyancy to organisms. On land, plants need to develop structural support in a medium that does not give the same lift as water. The organism is also subject to bombardment by mutagenic radiation because air does not filter out the ultraviolet rays of sunlight. Additionally, the male gametes must reach the female gametes using new strategies because swimming is no longer possible. As such, both gametes and zygotes must be protected from desiccation. Successful land plants have developed strategies to face all of these challenges. Not all adaptations appeared at once; some species never moved very far from the aquatic environment, although others went on to conquer the driest environments on Earth.
Despite these survival challenges, life on land does offer several advantages. First, sunlight is abundant. Water acts as a filter, altering the spectral quality of light absorbed by the photosynthetic pigment chlorophyll. Second, carbon dioxide is more readily available in air than water since it diffuses faster in air. Third, land plants evolved before land animals; therefore, until dry land was also colonized by animals, no predators threatened plant life. This situation changed as animals emerged from the water and fed on the abundant sources of nutrients in the established flora. In turn, plants developed strategies to deter predation: from spines and thorns to toxic chemicals.
Early land plants, like the early land animals, did not live far from an abundant source of water and developed survival strategies to combat dryness. One of these strategies is called desiccation tolerance. Many mosses can dry out to a brown and brittle mat, but as soon as rain or a flood makes water available, mosses will absorb it and are restored to their healthy green appearance. Another strategy is to colonize environments where droughts are uncommon. Ferns, which are considered an early lineage of plants, thrive in damp and cool places such as the understory of temperate forests. Later, plants moved away from moist or aquatic environments and developed resistance to desiccation, rather than tolerance. These plants, like cacti, minimize the loss of water to such an extent they can survive in extremely dry environments.
The most successful adaptation solution was the development of new structures that gave plants the advantage when colonizing new and dry environments. Four major adaptations are found in all terrestrial plants: the alternation of generations, a sporangium in which the spores are formed, a gametangium that produces haploid cells, and apical meristem tissue in roots and shoots. The evolution of a waxy cuticle and a cell wall with lignin also contributed to the success of land plants. These adaptations are noticeably lacking in the closely-related green algae, which gives reason for the debate over their placement in the plant kingdom.
Alternation of generations describes a life cycle in which an organism has both haploid and diploid multicellular stages (n represents the number of copies of chromosomes). Haplontic refers to a lifecycle in which there is a dominant haploid stage (1n), while diplontic refers to a lifecycle in which the diploid (2n) is the dominant life stage. Humans are diplontic. Most plants exhibit alternation of generations, which is described as haplodiplodontic. The haploid multicellular form, known as a gametophyte, is followed in the development sequence by a multicellular diploid organism: the sporophyte. The gametophyte gives rise to the gametes (reproductive cells) by mitosis. This can be the most obvious phase of the life cycle of the plant, as in the mosses. In fact, the sporophyte stage is barely noticeable in lower plants (the collective term for the plant groups of mosses, liverworts, and lichens). Alternatively, the gametophyte stage can occur in a microscopic structure, such as a pollen grain, in the higher plants (a common collective term for the vascular plants). Towering trees are the diplontic phase in the life cycles of plants such as sequoias and pines.
Alternation of generations of plants: Plants exhibit an alternation of generations between a 1n gametophyte and 2n sporophyte.
Protection of the embryo is a major requirement for land plants. The vulnerable embryo must be sheltered from desiccation and other environmental hazards. In both seedless and seed plants, the female gametophyte provides protection and nutrients to the embryo as it develops into the new generation of sporophyte. This distinguishing feature of land plants gave the group its alternate name of embryophytes.
Sporophytes (2n) undergo meiosis to produce spores that develop into gametophytes (1n) which undergo mitosis.
Describe the role of the sporophyte and gametophyte in plant reproduction
The sporophyte of seedless plants is diploid and results from syngamy (fusion) of two gametes. The sporophyte bears the sporangia (singular, sporangium): organs that first appeared in the land plants. The term sporangia literally means spore in a vessel: it is a reproductive sac that contains spores. Inside the multicellular sporangia, the diploid sporocytes, or mother cells, produce haploid spores by meiosis, where the 2n chromosome number is reduced to 1n (note that many plant sporophytes are polyploid: for example, durum wheat is tetraploid, bread wheat is hexaploid, and some ferns are 1000-ploid). The spores are later released by the sporangia and disperse in the environment.
Sporangia: Spore-producing sacs called sporangia grow at the ends of long, thin stalks in this photo of the moss Esporangios bryum.
Two different spore-forming methods are used in land plants, resulting in the separation of sexes at different points in the lifecycle. Seedless, non- vascular plants produce only one kind of spore and are called homosporous. The gametophyte phase (1n) is dominant in these plants. After germinating from a spore, the resulting gametophyte produces both male and female gametangia, usually on the same individual. In contrast, heterosporous plants produce two morphologically different types of spores. The male spores are called microspores, because of their smaller size, and develop into the male gametophyte; the comparatively larger megaspores develop into the female gametophyte. Heterospory is observed in a few seedless vascular plants and in all seed plants.
Lifecycle of heterosporous plants: Heterosporous plants produce two morphologically different types of spores: microspores, which develop into the male gametophyte, and megaspores, which develop into the female gametophyte.
When the haploid spore germinates in a hospitable environment, it generates a multicellular gametophyte by mitosis. The gametophyte supports the zygote formed from the fusion of gametes and the resulting young sporophyte (vegetative form). The cycle then begins anew.
The spores of seedless plants are surrounded by thick cell walls containing a tough polymer known as sporopollenin. This complex substance is characterized by long chains of organic molecules related to fatty acids and carotenoids: hence the yellow color of most pollen. Sporopollenin is unusually resistant to chemical and biological degradation. In seed plants, which use pollen to transfer the male sperm to the female egg, the toughness of sporopollenin explains the existence of well-preserved pollen fossils. Sporopollenin was once thought to be an innovation of land plants; however, the green algae, Coleochaetes, also forms spores that contain sporopollenin.
Gametangia (singular, gametangium) are organs observed on multicellular haploid gametophytes. In the gametangia, precursor cells give rise to gametes by mitosis. The male gametangium (antheridium) releases sperm. Many seedless plants produce sperm equipped with flagella that enable them to swim in a moist environment to the archegonia: the female gametangium. The embryo develops inside the archegonium as the sporophyte. Gametangia are prominent in seedless plants, but are replaced by pollen grains in seed-producing plants.
Plants developed a series of organs and structures to facilitate life on dry land independent from a constant source of water.
Discuss the primary structural adaptations made by plants to living on land
As plants adapted to dry land and became independent from the constant presence of water in damp habitats, new organs and structures made their appearance. Early land plants did not grow more than a few inches off the ground, competing for light on these low mats. By developing a shoot and growing taller, individual plants captured more light. Because air offers substantially less support than water, land plants incorporated more rigid molecules in their stems (and later, tree trunks).
Shoots and roots of plants increase in length through rapid cell division in a tissue called the apical meristem, which is a small zone of cells found at the shoot tip or root tip. The apical meristem is made of undifferentiated cells that continue to proliferate throughout the life of the plant. Meristematic cells give rise to all the specialized tissues of the organism. Elongation of the shoots and roots allows a plant to access additional space and resources: light, in the case of the shoot, and water and minerals, in the case of roots. A separate meristem, called the lateral meristem, produces cells that increase the diameter of tree trunks.
Apical meristem: Addition of new cells in a root occurs at the apical meristem. Subsequent enlargement of these cells causes the organ to grow and elongate. The root cap protects the fragile apical meristem as the root tip is pushed through the soil by cell elongation.
In small plants such as single-celled algae, simple diffusion suffices to distribute water and nutrients throughout the organism. However, for plants to develop larger forms, the evolution of vascular tissue for the distribution of water and solutes was a prerequisite. The vascular system contains xylem and phloem tissues. Xylem conducts water and minerals absorbed from the soil up to the shoot, while phloem transports food derived from photosynthesis throughout the entire plant. A root system evolved to take up water and minerals from the soil, while anchoring the increasingly taller shoot in the soil.
In land plants, a waxy, waterproof cover called a cuticle protects the leaves and stems from desiccation. However, the cuticle also prevents intake of carbon dioxide needed for the synthesis of carbohydrates through photosynthesis. To overcome this, stomata, or pores, that open and close to regulate traffic of gases and water vapor, appeared in plants as they moved away from moist environments into drier habitats.
Water filters ultraviolet-B (UVB) light, which is harmful to all organisms, especially those that must absorb light to survive. This filtering does not occur for land plants. This presented an additional challenge to land colonization, which was met by the evolution of biosynthetic pathways for the synthesis of protective flavonoids and other compounds: pigments that absorb UV wavelengths of light and protect the aerial parts of plants from photodynamic damage.
Plants cannot avoid being eaten by animals. Instead, they synthesize a large range of poisonous secondary metabolites: complex organic molecules such as alkaloids, whose noxious smells and unpleasant taste deter animals. These toxic compounds can also cause severe diseases and even death, thus discouraging predation. Humans have used many of these compounds for centuries as drugs, medications, or spices. In contrast, as plants co-evolved with animals, the development of sweet and nutritious metabolites lured animals into providing valuable assistance in dispersing pollen grains, fruit, or seeds. Plants have been enlisting animals to be their helpers in this way for hundreds of millions of years.
Land plants, or embryophytes, are classified by the presence or absence of vascular tissue and how they reproduce (with or without seeds).
Identify the major divisions of land plants
The green algae, known as the charophytes, and land plants are grouped together into a subphylum called the Streptophytina and are, therefore, called Streptophytes. Land plants, which are called embryophytes, are classified into two major groups according to the absence or presence of vascular tissue. Plants that lack vascular tissue, which is formed of specialized cells for the transport of water and nutrients, are referred to as non-vascular plants or bryophytes. Non-vascular embryophytes probably appeared early in land plant evolution and are all seedless. These plants include liverworts, mosses, and hornworts.
Major divisions of land plants: Land plants are categorized by presence or absence of vascular tissue and their reproduction with or without the use of seeds.
In contrast, vascular plants developed a network of cells, called xylem and phloem, that conduct water and solutes throughout the plant. The first vascular plants appeared in the late Ordovician period of the Paleozoic Era (approximately 440-485 million years ago). These early plants were probably most similar to modern day lycophytes, which include club mosses (not to be confused with the mosses), and pterophytes, which include ferns, horsetails, and whisk ferns. Lycophytes and pterophytes are both referred to as seedless vascular plants because they do not produce any seeds.
The seed producing plants, or spermatophytes, form the largest group of all existing plants, dominating the landscape. Seed-producing plants include gymnosperms, most notably conifers, which produce naked seeds, and the most successful of all modern-day plants, angiosperms, which are the flowering plants. Angiosperms protect their seeds inside chambers at the center of a flower; the walls of the chamber later develop into a fruit.
See the rest here:
Early Plant Life | Boundless Biology
- Vascular Cell and Molecular Biology | Center for Vascular Biology | Weill Cornell ... [Last Updated On: April 13th, 2018] [Originally Added On: April 13th, 2018]
- APVBO-Asia Pacific Vascular Biology Organization Conference [Last Updated On: April 18th, 2018] [Originally Added On: April 18th, 2018]
- Vascular Biology Conferences | Vascular Surgery ... [Last Updated On: May 5th, 2018] [Originally Added On: May 5th, 2018]
- Vascular Discovery: From Genes to Medicine [Last Updated On: May 7th, 2018] [Originally Added On: May 7th, 2018]
- 2019 Vascular Cell Biology Conference GRC [Last Updated On: May 26th, 2018] [Originally Added On: May 26th, 2018]
- Biology 211: Taxonomy of Flowering Plants [Last Updated On: June 7th, 2018] [Originally Added On: June 7th, 2018]
- esm-evbo2019.org - Menu [Last Updated On: July 27th, 2018] [Originally Added On: July 27th, 2018]
- Vascular Biology | Pulmonary, Allergy, Sleep & Critical ... [Last Updated On: November 16th, 2018] [Originally Added On: November 16th, 2018]
- Lower vascular plant | biology | Britannica.com [Last Updated On: November 18th, 2018] [Originally Added On: November 18th, 2018]
- Vascular Biology - NAVBO [Last Updated On: November 20th, 2018] [Originally Added On: November 20th, 2018]
- 2019 Cerebral Vascular Biology Conference - cvent.com [Last Updated On: November 21st, 2018] [Originally Added On: November 21st, 2018]
- PPARs and Their Emerging Role in Vascular Biology ... [Last Updated On: November 26th, 2018] [Originally Added On: November 26th, 2018]
- Vascular Biology Chicago Medicine [Last Updated On: November 30th, 2018] [Originally Added On: November 30th, 2018]
- Vascular Biology | Society for Vascular Surgery [Last Updated On: November 30th, 2018] [Originally Added On: November 30th, 2018]
- Vascular Biology 2018 - NAVBO [Last Updated On: December 19th, 2018] [Originally Added On: December 19th, 2018]
- Vascular Biology 2019 - NAVBO [Last Updated On: December 20th, 2018] [Originally Added On: December 20th, 2018]
- Vascular Biology [Last Updated On: January 22nd, 2019] [Originally Added On: January 22nd, 2019]
- pvb2019.org Plant Vascular Biology Conference 2019 [Last Updated On: January 31st, 2019] [Originally Added On: January 31st, 2019]
- Plant Physiology | Basic Biology [Last Updated On: March 12th, 2019] [Originally Added On: March 12th, 2019]
- Awards - esm-evbo2019.org [Last Updated On: April 23rd, 2019] [Originally Added On: April 23rd, 2019]
- Medication and Exercise to Prevent Muscle Loss - Next Avenue [Last Updated On: September 24th, 2019] [Originally Added On: September 24th, 2019]
- A Snail as Fast as a Bullet, and Other Darwin-Defying Marvels - Discovery Institute [Last Updated On: September 24th, 2019] [Originally Added On: September 24th, 2019]
- Nature up close: Life in the Humboldt Penguin National Reserve - CBS News [Last Updated On: September 24th, 2019] [Originally Added On: September 24th, 2019]
- Oklahoma new hires and promotions announced - Oklahoman.com [Last Updated On: September 24th, 2019] [Originally Added On: September 24th, 2019]
- Quinn Capers IV, MD - TCTMD [Last Updated On: September 24th, 2019] [Originally Added On: September 24th, 2019]
- Cardiovascular Repair And Reconstruction Devices Market Global Industry Insights by Top Vendors, Growth, Revenue and Forecast Outlook 2019-2025 -... [Last Updated On: September 26th, 2019] [Originally Added On: September 26th, 2019]
- Four health projects at Boston Childrens Hospital that could help adults - The Boston Globe [Last Updated On: September 30th, 2019] [Originally Added On: September 30th, 2019]
- Research Officer/ Postdoctoral Researcher - The Conversation AU [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]
- UNSW skin cancer researcher Levon Khachigian hit with string of retractions - ABC News [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]
- Michal Wszola: We Expect to Transplant the Bioprinted Bionic Pancreas in Three to Five Years - 3DPrint.com [Last Updated On: October 24th, 2019] [Originally Added On: October 24th, 2019]
- 'The Blob': This mysterious 'smart' slime can solve puzzles and make decisions - CNBC [Last Updated On: October 24th, 2019] [Originally Added On: October 24th, 2019]
- University of Maryland and DOD collaborate to study Tick-borne Infections using 3-D models of human blood vessels - Outbreak News Today [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Submerged Vegetation Mirrors Coast's Health - Coastal Review Online [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Another health warning for e-cigarette users that has nothing to do with lung disease - MarketWatch [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- E-Cigarettes Take a Dangerous Toll on Heart Health - DocWire News [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Vascular biology Department of Surgery College of ... [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- US Nobel laureates tell us what they think about cancer research, moonshots, the dark side, funding, meritocracy, herd mentality, Trump, and joy - The... [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- Growing Organs in the Lab: One Step Closer to Reality - BioSpace [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- Inotrem Announces Enrollment of First Patient in its Phase IIb ASTONISH Trial for Nangibotide in the Treatment of Septic Shock - Business Wire [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- Another Study Suggests E-cigarettes Hurt Heart Health More Than Regular Cigarettes - Science Times [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- Cleveland Clinic awarded $12 million by NIH to study the link between gut microbes and heart disease - Crain's Cleveland Business [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- JanOne Acquires Worldwide, Exclusive License for Promising Treatment of Peripheral Arterial Disease (PAD) - Yahoo Finance [Last Updated On: November 27th, 2019] [Originally Added On: November 27th, 2019]
- Germ-free lungs of newborn mice are partially protected against hyperoxia - The Mix [Last Updated On: November 27th, 2019] [Originally Added On: November 27th, 2019]
- Bethesda Health Physician Group Welcomes Fellowship-Trained Endocrine Surgeon Jessica L. Buicko, MD, to Its Team - The Boca Raton Tribune [Last Updated On: November 27th, 2019] [Originally Added On: November 27th, 2019]
- 9 Harvard researchers named AAAS Fellows Harvard - Harvard Gazette [Last Updated On: November 27th, 2019] [Originally Added On: November 27th, 2019]
- Top Technical Advances of 2019 - The Scientist [Last Updated On: December 29th, 2019] [Originally Added On: December 29th, 2019]
- Growing up Tyrannosaurus rex: Osteohistology refutes the pygmy Nanotyrannus and supports ontogenetic niche partitioning in juvenile Tyrannosaurus -... [Last Updated On: January 2nd, 2020] [Originally Added On: January 2nd, 2020]
- UCC currently taking applicants for 21 jobs with some incredible pay - Cork Beo [Last Updated On: January 2nd, 2020] [Originally Added On: January 2nd, 2020]
- Vascular Biology | Surgery Research | Michigan Medicine ... [Last Updated On: January 2nd, 2020] [Originally Added On: January 2nd, 2020]
- Sandy Bottom wetlands to receive protection for 'national ecological significance' - Citizen Times [Last Updated On: January 14th, 2020] [Originally Added On: January 14th, 2020]
- Why biotech is a boon for patients and investors - Spear's WMS [Last Updated On: January 14th, 2020] [Originally Added On: January 14th, 2020]
- Exonate Announces Collaboration With Janssen to Develop a New Eye Drop for the Treatment of Retinal Vascular Diseases Including Wet Age-related... [Last Updated On: January 14th, 2020] [Originally Added On: January 14th, 2020]
- G-protein Coupled Receptor Market Competitive Research And Precise Outlook 2019 To 2025 Dagoretti News - Dagoretti News [Last Updated On: January 18th, 2020] [Originally Added On: January 18th, 2020]
- Scientists revealed the oldest known scorpion on Earth - Tech Explorist [Last Updated On: January 18th, 2020] [Originally Added On: January 18th, 2020]
- How biology creates networks that are cheap, robust, and efficient - Penn: Office of University Communications [Last Updated On: January 18th, 2020] [Originally Added On: January 18th, 2020]
- Genome editing heralds new era of disease research, therapy - The Augusta Chronicle [Last Updated On: January 18th, 2020] [Originally Added On: January 18th, 2020]
- Research Fellow in Vascular Stem Cell Biology job with QUEENS UNIVERSITY BELFAST | 195527 - Times Higher Education (THE) [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- More than skin deep: the latest innovation in 3D printing - Med-Tech Innovation [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- Examining the link between menopause and heart disease risk - Medical News Bulletin [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- Women Face an Increased Risk of Heart Disease With AgeRunning Can Help - runnersworld.com [Last Updated On: February 12th, 2020] [Originally Added On: February 12th, 2020]
- G-protein Coupled Receptor Market Competitive Research And Precise Outlook 2019 To 2025 - Galus Australis [Last Updated On: February 15th, 2020] [Originally Added On: February 15th, 2020]
- Valentine's Day Matters of the Heart, Biopharma-Style - BioSpace [Last Updated On: February 15th, 2020] [Originally Added On: February 15th, 2020]
- The Addicted Gardener: Environmental tidbits from around the world - Wicked Local Sharon [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- UI at 150 & Beyond: 'The Quad was the best no matter what the weather' - Champaign/Urbana News-Gazette [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- The Addicted Gardener: Environmental tidbits from around the world - Wicked Local Dedham [Last Updated On: February 23rd, 2020] [Originally Added On: February 23rd, 2020]
- THE ADDICTED GARDENER: Environmental tidbits from around the world - Wicked Local Wareham [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- 'Little Foot' skull reveals how this more than 3 million year old human ancestor lived - HeritageDaily [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- It's Not Only About Neurons - The Good Men Project [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Who is Sir Patrick Vallance and what is his role in government during coronavirus outbreak? - The Scottish Sun [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- University of Washington Pathology Professor Dies of COVID-19 - The Scientist [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- THE ADDICTED GARDENER: Environmental tidbits from around the world - Wicked Local Rochester [Last Updated On: March 23rd, 2020] [Originally Added On: March 23rd, 2020]
- Ancient human ancestor 'Little Foot' probably lived in trees, new research finds - WBAP News/Talk [Last Updated On: March 23rd, 2020] [Originally Added On: March 23rd, 2020]
- Study shows similarity in anti-VEGF injection intervals for wet AMD - Ophthalmology Times [Last Updated On: March 25th, 2020] [Originally Added On: March 25th, 2020]
- aTyr Pharma and its Hong Kong Subsidiary, Pangu BioPharma, Announce Government Grant to Fund Bispecific Antibody Development Platform - BioSpace [Last Updated On: March 25th, 2020] [Originally Added On: March 25th, 2020]
- Health researchers find solution to life-threatening side effect - Mirage News [Last Updated On: March 25th, 2020] [Originally Added On: March 25th, 2020]
- European Vascular Biology Organisation | Advancing human ... [Last Updated On: March 25th, 2020] [Originally Added On: March 25th, 2020]
- Vascular Biology Program | Boston Children's Hospital [Last Updated On: March 25th, 2020] [Originally Added On: March 25th, 2020]
- Vascular Biology Research Program | Johns Hopkins ... [Last Updated On: March 25th, 2020] [Originally Added On: March 25th, 2020]
- Anatomy of a heatwave: how Antarctica recorded a 20.75C day last month - The Conversation AU [Last Updated On: April 1st, 2020] [Originally Added On: April 1st, 2020]
- Who is Sir Patrick Vallance and is he speaking at todays government coronavirus press briefing? - The Sun [Last Updated On: April 1st, 2020] [Originally Added On: April 1st, 2020]