Light-induced asymmetries in embryonic retinal gene expression are mediated by the vascular system and extracellular matrix | Scientific Reports -…

Posted: Published on July 16th, 2022

This post was added by Alex Diaz-Granados

Versace, E. & Vallortigara, G. Forelimb preferences in human beings and other species: Multiple models for testing hypotheses on lateralization. Front. Psychol. 6, 19 (2015).

Article Google Scholar

Strckens, F., Gntrkn, O. & Ocklenburg, S. Limb preferences in non-human vertebrates. Laterality 18, 536575 (2013).

PubMed Article Google Scholar

Vallortigara, G. & Versace, E. Laterality at the neural, cognitive, and behavioral levels. In APA Handbook of Comparative Psychology: Vol. 1 Basic Concepts, Methods, Neural Substrate, and Behavior (ed. Call, J.) (American Psychological Association, 2017).

Google Scholar

Rogers, L. J., Vallortigara, G. & Andrew, R. J. Divided Brains: The Biology and Behaviour of Brain Asymmetries (Cambridge University Press, 2013).

Book Google Scholar

MacNeilage, B. P. F., Rogers, L. J. & Vallortigara, G. Origins of left and right brain. Sci. Am. 301, 6067 (2009).

ADS PubMed Article Google Scholar

Ocklenburg, S. & Gntrkn, O. The Lateralized Brain: The Neuroscience and Evolution of Hemispheric Asymmetries (Elsevier Inc., 2017).

Google Scholar

Vallortigara, G. & Rogers, L. J. Survival with an asymmetrical brain: Advantages and disadvantages of cerebral lateralization. Behav. Brain Sci. 28, 575633 (2005).

PubMed Article Google Scholar

Kurvers, R. H. J. M. et al. The evolution of lateralization in group hunting sailfish. Curr. Biol. 27, 521526 (2017).

CAS PubMed Article Google Scholar

Magat, M. & Brown, C. Laterality enhances cognition in Australian parrots. Proc. R. Soc. B Biol. Sci. 276, 41554162 (2009).

Article Google Scholar

Bibost, A. L. & Brown, C. Laterality influences cognitive performance in rainbowfish Melanotaenia duboulayi. Anim. Cogn. 17, 10451051 (2014).

PubMed Article Google Scholar

Gntrkn, O. & Ocklenburg, S. Ontogenesis of lateralization. Neuron 94, 249263 (2017).

PubMed Article CAS Google Scholar

Vallortigara, G. & Rogers, L. J. A function for the bicameral mind. Cortex 124, 274285 (2020).

PubMed Article Google Scholar

Brandler, W. M. & Paracchini, S. The genetic relationship between handedness and neurodevelopmental disorders. Trends Mol. Med. 20, 8489 (2014).

Article Google Scholar

Trulioff, A., Ermakov, A. & Malashichev, Y. Primary cilia as a possible link between left-right asymmetry and neurodevelopmental diseases. Genes 8, 124 (2017).

Article CAS Google Scholar

Blum, M. & Ott, T. Animal leftright asymmetry. Curr. Biol. 28, R301R304 (2018).

CAS PubMed Article Google Scholar

Concha, M. L., Burdine, R. D., Russell, C., Schier, A. F. & Wilson, S. W. A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron 28, 399409 (2000).

CAS PubMed Article Google Scholar

Manns, M. It is not just in the genes. Symmetry (Basel) 13, 1815 (2021).

Article Google Scholar

Morandi-Raikova, A., Krubeal, D., Lorenzi, E., Rosa-Salva, O. & Mayer, U. Anatomical asymmetries in the tectofugal pathway of dark-incubated domestic chicks: Rightwards lateralization of parvalbumin neurons in the entopallium. Laterality 26, 163185 (2021).

PubMed Article Google Scholar

Rogers, L. J. & Deng, C. Light experience and lateralization of the two visual pathways in the chick. Behav. Brain Res. 98, 277287 (1999).

CAS PubMed Article Google Scholar

Cuellar-Partida, G. et al. Genome-wide association study identifies 48 common genetic variants associated with handedness. Nat. Hum. Behav. 5, 5970 (2021).

PubMed Article Google Scholar

Levin, M. Left-right asymmetry in embryonic development: A comprehensive review. Mech. Dev. 122, 325 (2005).

CAS PubMed Article Google Scholar

Vandenberg, L. N. & Levin, M. A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev. Biol. 379, 115 (2013).

CAS PubMed PubMed Central Article Google Scholar

Basu, B. & Brueckner, M. Cilia: Multifunctional organelles at the center of vertebrate left-right asymmetry. Curr. Top. Dev. Biol. 85, 151174 (2008).

CAS PubMed Article Google Scholar

Anvarian, Z., Mykytyn, K., Mukhopadhyay, S., Pedersen, L. B. & Christensen, S. T. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15, 199219 (2019).

PubMed PubMed Central Article Google Scholar

Little, R. B. & Norris, D. P. Right, left and cilia: How asymmetry is established. Semin. Cell Dev. Biol. 110, 1118 (2021).

CAS PubMed Article Google Scholar

Seeger-Nukpezah, T. & Golemis, E. A. The extracellular matrix and ciliary signaling. Curr. Opin. Cell Biol. 24, 652661 (2012).

CAS PubMed PubMed Central Article Google Scholar

Goodman, L. & Zallocchi, M. Integrin 8 and Pcdh15 act as a complex to regulate cilia biogenesis in sensory cells. J. Cell Sci. 130, 36983712 (2017).

CAS PubMed PubMed Central Google Scholar

Ning, K. et al. Primary cilia in amacrine cells in retinal development. Investig. Ophthalmol. Vis. Sci. 62, 111 (2021).

Google Scholar

Alvarado, J. A. et al. Developmental distribution of primary cilia in the retinofugal visual pathway. J. Comp. Neurol. 529, 14421455 (2021).

PubMed Article Google Scholar

Tabin, C. J. & Vogan, K. J. A two-cilia model for vertebrate left-right axis specification. Genes Dev. 17, 16 (2003).

CAS PubMed Article Google Scholar

McGrath, J., Somlo, S., Makova, S., Tian, X. & Brueckner, M. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114, 6173 (2003).

CAS PubMed Article Google Scholar

McManus, I. C., Martin, N., Stubbings, G. F., Chung, E. M. K. & Mitchison, H. M. Handedness and situs inversus in primary ciliary dyskinesia. Proc. R. Soc. B Biol. Sci. 271, 25792582 (2004).

CAS Article Google Scholar

Davis, E. E. & Katsanis, N. The ciliopathies: A transitional model into systems biology of human genetic disease. Curr. Opin. Genet. Dev. 22, 290303 (2012).

CAS PubMed PubMed Central Article Google Scholar

Maizels, E. T. et al. Cell movements at Hensens node establish left/right asymmetric gene expression in the chick. Science 324, 941945 (2009).

Article CAS Google Scholar

Barth, K. A. et al. fsi zebrafish show concordant reversal of laterality of viscera, neuroanatomy, and a subset of behavioral responses. Curr. Biol. 15, 844850 (2005).

CAS PubMed PubMed Central Article Google Scholar

Schmitz, J., Gntrkn, O. & Ocklenburg, S. Building an asymmetrical brain: The molecular perspective. Front. Psychol. 10, 982 (2019).

PubMed PubMed Central Article Google Scholar

Schmitz, J., Metz, G. A. S., Gntrkn, O. & Ocklenburg, S. Beyond the genomeTowards an epigenetic understanding of handedness ontogenesis. Prog. Neurobiol. 159, 6989 (2017).

PubMed Article Google Scholar

Schmitz, J., Lor, S., Klose, R., Gntrkn, O. & Ocklenburg, S. The functional genetics of handedness and language lateralization: Insights from gene ontology, pathway and disease association analyses. Front. Psychol. 8, 112 (2017).

CAS Article Google Scholar

Rogers, L. J. Light input and the reversal of functional lateralization in the chicken brain. Behav. Brain Res. 38, 211221 (1990).

ADS CAS PubMed Article Google Scholar

Rogers, L. J. Light experience and asymmetry of brain function in chickens. Nature 297, 223225 (1982).

ADS CAS PubMed Article Google Scholar

Dadda, M. & Bisazza, A. Prenatal light exposure affects development of behavioural lateralization in a livebearing fish. Behav. Process. 91, 115118 (2012).

Article Google Scholar

Chiandetti, C. & Vallortigara, G. Effects of embryonic light stimulation on the ability to discriminate left from right in the domestic chick. Behav. Brain Res. 198, 240246 (2009).

PubMed Article Google Scholar

Chiandetti, C., Regolin, L., Rogers, L. J. & Vallortigara, G. Effects of light stimulation of embryos on the use of position-specific and object-specific cues in binocular and monocular domestic chicks (Gallus gallus). Behav. Brain Res. 163, 1017 (2005).

PubMed Article Google Scholar

Chiandetti, C., Lemaire, B. S., Versace, E. & Vallortigara, G. Early- and late-light embryonic stimulation modulates similarly chicks ability to filter out distractors. Symmetry (Basel) 9, 84 (2017).

Article Google Scholar

Chiandetti, C., Galliussi, J., Andrew, R. J. & Vallortigara, G. Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates. Sci. Rep. 3, 2701 (2013).

ADS PubMed PubMed Central Article Google Scholar

Budaev, S. & Andrew, R. Shyness and behavioural asymmetries in larval zebrafish (Brachydanio rerio) developed in light and dark. Behaviour 146, 10371052 (2009).

Article Google Scholar

Manns, M. & Gntrkn, O. Dual coding of visual asymmetries in the pigeon brain: The interaction of bottom-up and top-down systems. Exp. Brain Res. 199, 323332 (2009).

PubMed Article Google Scholar

Kovach, J. K. Development and mechanisms of behavior in the chick embryo during the last five days of incubation. J. Comp. Physiol. Psychol. 73, 392406 (1970).

CAS PubMed Article Google Scholar

Rogers, L. J. & Bolden, S. W. Light-dependent development and asymmetry of visual projections. Neurosci. Lett. 121, 6367 (1991).

CAS PubMed Article Google Scholar

Johnston, A. N. B. & Rogers, L. J. Light exposure of chick embryo influences lateralized recall of imprinting memory. Behav. Neurosci. 113, 12671273 (1999).

CAS PubMed Article Google Scholar

Continued here:
Light-induced asymmetries in embryonic retinal gene expression are mediated by the vascular system and extracellular matrix | Scientific Reports -...

Related Posts
This entry was posted in Vascular Biology. Bookmark the permalink.

Comments are closed.