Summary: Two studies reveal that scientists have misidentified gut stem cells, impacting research and treatments for 15 years. Researchers identified the true stem cells in a different gut region, which could lead to breakthroughs in regenerative medicine.
This discovery highlights the importance of accurate identification for effective treatments. The findings could improve therapies for intestinal diseases and beyond.
Key Facts:
Source: Columbia University
Two independent studies by Columbia scientists suggest that research into the guts stem cells over the past 15 years has been marred by a case of mistaken identity: Scientists have been studying the wrong cell.
Both studies were published online today in the journalCell.
The guts stem cells are some of the hardest-working stem cells in the body. They work continuously throughout our lives to replenish the short-lived cells that line our intestines. About every four days, these cellscovering a surface about the size of a tennis courtare completely replaced.
Understanding these workaholic stem cells could help scientists turn on less productive stem cells in other organs to repair hearts, lungs, brains, and more.
The guts stem cells were supposedly identified more than 15 years ago in a landmark study.
But using new lineage tracing and computational tools, the Columbia teams, led by Timothy Wang and Kelley Yan, found that these cells are descendants of the guts true stem cells. The guts true stem cells are found in a different location, produce different proteins, and respond to different signals.
The new work is controversial and paradigm-shifting but could revitalize the [entire?] field of regenerative medicine, says Timothy Wang, the Dorothy L. and Daniel H. Silberberg Professor of Medicine.
We know were making a lot of waves in the field, but if were going to make progress, we need to identify the true stem cells so we can target these cells for therapies, says Kelley Yan, the Herbert Irving Assistant Professor of Medicine.
We recently spoke with Yan and Wang about the findings and implications.
KY Whats relevant to this story is a tissue called the intestinal epithelium. This is a single layer of cells that lines the gut and its composed of different types of cells that help digest food, absorb nutrients, and fight microbes.
Most of the cells live for only about four days before being replaced, so stem cells must create replacements.
Whats really remarkable about the intestinal lining is how big it is. If we were to fillet open your intestine and lay it flat, it would cover the surface of a tennis court.
The guts stem cells may be the hardest working stem cells in the body.
TW: For the last 17 years, the intestinal stem cell field has assumed that Lgr5, a protein on the cells surface, is a specific marker for intestinal stem cells. In other words, all Lgr5+ cells are assumed to be stem cells, and all stem cells are believed to be Lgr5+. These Lgr5+ cells were located at the very bottom of glands, or crypts, in the intestinal lining.
However, in the last decade, problems with this model began to appear. Deleting the Lgr5+ cells in mice, using a genetic approach, did not seem to bother the intestine very much, and the Lgr5+ stem cells reappeared over the course of a week. In addition, the intestine was able to regenerate after severe injury, such as radiation-induced damage, even though the injury destroyed nearly all Lgr5+ cells.
KY: By their very definition, stem cells are the cells that regenerate tissues, so these findings created a paradox. Many high-profile papers have evoked different mechanisms to explain the paradox: Some suggest that other fully mature intestinal cells can walk backward in developmental time and regain stem cell characteristics. Others suggest theres a dormant population of stem cells that only works when the lining is damaged.
No one has really examined the idea that maybe the Lgr5+ cells really arent truly stem cells, which is the simplest explanation.
TW: My lab collaborated with the former chair of Columbias systems biology department, Andrea Califano, who has developed cutting-edge computational algorithms that can reconstruct the relationships among cells within a tissue. We used single-cell RNA sequencing to characterize all the cells in the crypts, the region of the intestine where the stem cells are known to reside, and then fed that data into the algorithms.
These algorithms revealed the source of stemness in the intestine not in the Lgr5+ cellular pool but in another type of cell higher up in the crypts in a region known as the isthmus. After eliminating Lgr5+ cells with radiation or genetic ablation, we confirmed these isthmus cells were the guts stem cells and able to regenerate the intestinal lining. We didnt find any evidence that other, mature cells could turn back time and become stem cells.
KY: We werent trying to identify the stem cells as much as we were trying to understand the other cells in the intestine involved in regeneration of the lining. No one has been able to define these other progenitor cells in the intestine.
We identified a population of cells that were proliferative and marked by a protein called FGFBP1. When we asked how these cells were related to Lgr5+ cells, our computational analysis told us that these FGFBP1 cells give rise to all the intestinal cells, including Lgr5+, the opposite of the accepted model.
My graduate student, Claudia Capdevila, then made a mouse that would allow us to determine which cellsLgr5+ or FGFBP1+were the true stem cells. In this mouse, every time the FGFBP1 gene is turned on in a cell, the cell would express two different fluorescent proteins, red and blue. The red would turn on immediately and turn off immediately, while the blue came on a little later and lingered for days.
That allowed us to track the cells over time, and it clearly showed that the FGFBP1 cells create the Lgr5+ cells, the opposite of what people currently believe. This technique, called time-resolved fate mapping, has only been used a few times before, and getting it to work was a pretty incredible achievement, I thought.
TW: This case of mistaken identity may explain why regenerative medicine has not lived up to its promise. Weve been looking at the wrong cells.
Past studies will need to be reinterpreted in light of the stem cells new identity, but eventually it may lead to therapies that help the intestine regenerate in people with intestinal diseases and possible transplantation of stem cells in the future.
KY: Ultimately, we hope to identify a universal pathway that underlies how stem cells work, so we can then apply the principles we learn about the gut to other tissues like skin, hair, brain, heart, lung, kidney, liver, etc.
Its also thought that some cancers arise from stem cells that have gone awry. So, in understanding the identity of the stem cell, we might be able to also develop novel therapeutics that can prevent the development of cancer.
Thats why its so critical to understand what cell underlies all of this.
Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+ crypt base columnar cells, was published June 6 in Cell.
All authors: Claudia Capdevila, Jonathan Miller, Liang Cheng, Adam Kornberg, Joel J. George, Hyeonjeong Lee, Theo Botella, Christine S. Moon, John W. Murray, Stephanie Lam, Ermanno Malagola, Gary Whelan, Chyuan-Sheng Lin, Arnold Han, Timothy C. Wang, Peter A. Sims, & Kelley S. Yan. The authors (all from Columbia) declare no competing financial interests.
Funding: The study was supported by the U.S. National Institutes of Health (though grants DP2DK128801, R01AG067014, P30CA013696, P30DK132710, U01DK103155, T32DK083256, and T32HL105323), a Burroughs Wellcome Fund Career Award for Medical Scientists, the Irma T. Hirschl Trust, an Irving Scholars Award, the Gerstner Foundation, a Damon Runyon-Rachleff Innovation Award, a NYSTEM predoctoral training grant, and the Berrie Foundation.
Isthmus progenitor cells contribute to homeostatic cellular turnover and supportregeneration following intestinal injury, was published June 6 in Cell.
All authors (from Columbia unless noted): Ermanno Malagola, Alessandro Vasciaveo, Yosuke Ochiai, Woosook Kim, Biyun Zheng (Columbia and Fujian Medical University, China), Luca Zanella, Alexander L.E. Wang, Moritz Middelhoff (University Hospital Heidelberg), Henrik Nienhser (University Hospital Heidelberg), Lu Deng (University of Kansas), Feijing Wu, Quin T. Waterbury, Bryana Belin, Jonathan LaBella, Leah B. Zamechek, Melissa H. Wong (Oregon Health & Sciences University), Linheng Li (University of Kansas), Chandan Guha (Albert Einstein College of Medicine), Chia-Wei Cheng, Kelley S. Yan, Andrea Califano (Columbia and Chan Zuckerberg Biohub NY), and Timothy C. Wang.
Funding: This research was funded by the U.S. National Institutes of Health (through grants P30CA013696, P30DK132710, U01DK103155, R35CA210088, R01NK128195, R35CA197745, S10OD012351, S10OD021764, and S10OD032433) and the U.S. Department of Defense (grants W81XWH-465 21-10901 and W81XWH19-1-0337).
Andrea Califano is founder, equity holder, and consultant of DarwinHealth Inc., a companythat has licensed from Columbia University some of the algorithms used in this manuscript. Columbia University is also an equity holder in DarwinHealth Inc. U.S. patent number 10,790,040 has been awarded related to this work, assigned to Columbia University with Andrea Califano as an inventor.
Author: Helen Garey Source: Columbia University Contact: Helen Garey Columbia University Image: The image is credited to Neuroscience News
Original Research: Open access. Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+ crypt base columnar cells by Claudia Capdevila et al. Cell
Open access. Isthmus progenitor cells contribute to homeostatic cellular turnover and supportregeneration following intestinal injury by Ermanno Malagola et al. Cell
Abstract
Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+ crypt base columnar cells
In the prevailing model,Lgr5+ cells are the only intestinal stem cells (ISCs) that sustain homeostatic epithelial regeneration by upward migration of progeny through elusive upper crypt transit-amplifying (TA) intermediates.
Here, we identify a proliferative upper crypt population marked byFgfbp1, in the location of putative TA cells, that is transcriptionally distinct fromLgr5+ cells.
Using a kinetic reporter for time-resolved fate mapping andFgfbp1-CreERT2lineage tracing, we establish thatFgfbp1+ cells are multi-potent and give rise toLgr5+ cells, consistent with their ISC function.Fgfbp1+ cells also sustain epithelial regeneration followingLgr5+ cell depletion.
We demonstrate that FGFBP1, produced by the upper crypt cells, is an essential factor for crypt proliferation and epithelial homeostasis.
Our findings support a model in which tissue regeneration originates from upper cryptFgfbp1+ cells that generate progeny propagating bi-directionally along the crypt-villus axis and serve as a source ofLgr5+ cells in the crypt base.
Abstract
Isthmus progenitor cells contribute to homeostatic cellular turnover and supportregeneration following intestinal injury
The currently accepted intestinal epithelial cell organization model proposes that Lgr5+crypt-base columnar (CBC) cells represent the sole intestinal stem cell (ISC) compartment.
However, previous studies have indicated that Lgr5+cells are dispensable for intestinal regeneration, leading to two major hypotheses: one favoring the presence of a quiescent reserve ISC and the other calling for differentiated cell plasticity. To investigate these possibilities, we studied crypt epithelial cells in an unbiased fashion via high-resolution single-cell profiling.
These studies, combined withinvivolineage tracing, show thatLgr5is not a specific ISC marker and that stemness potential exists beyond the crypt base and resides in the isthmus region, where undifferentiated cells participate in intestinal homeostasis and regeneration following irradiation (IR) injury.
Our results provide an alternative model of intestinal epithelial cell organization, suggesting that stemness potential is not restricted to CBC cells, and neither de-differentiation nor reserve ISC are drivers of intestinal regeneration.
Originally posted here:
Mistaken Identity: Gut Stem Cell Discovery Could Transform Regenerative Medicine - Neuroscience News
- Politics of Stem Cell Research [Last Updated On: May 7th, 2011] [Originally Added On: May 7th, 2011]
- Obama Ends Funding Ban for Stem Cell Research [Last Updated On: May 8th, 2011] [Originally Added On: May 8th, 2011]
- Stem Cell Research: A Father's Fight [Last Updated On: May 10th, 2011] [Originally Added On: May 10th, 2011]
- Human Embryonic stem cell research [Last Updated On: May 11th, 2011] [Originally Added On: May 11th, 2011]
- Frost Over The World - Stem Cell Research and Turkey -26 Oct [Last Updated On: May 20th, 2011] [Originally Added On: May 20th, 2011]
- McCain Favors Embryonic Stem Cell Research [Last Updated On: May 20th, 2011] [Originally Added On: May 20th, 2011]
- US divided over stem cell research reversal - 09 Mar 09 [Last Updated On: May 21st, 2011] [Originally Added On: May 21st, 2011]
- The Politics and Promise of Stem Cell Research [Last Updated On: May 22nd, 2011] [Originally Added On: May 22nd, 2011]
- Inside Story - Obama to end stem cell research ban - March 9 - Part1 [Last Updated On: May 30th, 2011] [Originally Added On: May 30th, 2011]
- Cardiovascular Therapies: Spotlight on Stem Cell Research - Douglas Boyd [Last Updated On: June 3rd, 2011] [Originally Added On: June 3rd, 2011]
- The Human Embryo and Embryonic Stem Cell Biology: Spotlight on Stem Cell Research [Last Updated On: June 3rd, 2011] [Originally Added On: June 3rd, 2011]
- US appeals court lifts stem cell research ban [Last Updated On: June 7th, 2011] [Originally Added On: June 7th, 2011]
- Trailer for Mapping Stem Cell Research: Terra Incognita [Last Updated On: June 9th, 2011] [Originally Added On: June 9th, 2011]
- Politics: President Obama on Stem Cell Research [Last Updated On: June 10th, 2011] [Originally Added On: June 10th, 2011]
- Stem Cell Research Documentary [Last Updated On: June 11th, 2011] [Originally Added On: June 11th, 2011]
- TEDxSingapore - Susan Lim - Hype and hope of stem cell research [Last Updated On: June 13th, 2011] [Originally Added On: June 13th, 2011]
- Lou Gehrig's Disease (ALS): Spotlight on Stem Cell Research - Wrapup [Last Updated On: June 14th, 2011] [Originally Added On: June 14th, 2011]
- The Next Frontier in Stem Cell Research [Last Updated On: June 17th, 2011] [Originally Added On: June 17th, 2011]
- Robert Klein: Stem Cell Research [Last Updated On: June 22nd, 2011] [Originally Added On: June 22nd, 2011]
- Fibrocell Stem-Cell Wrinkle Smoother Wins FDA Clearance [Last Updated On: June 23rd, 2011] [Originally Added On: June 23rd, 2011]
- The Politics of Stem Cell Research [Last Updated On: June 23rd, 2011] [Originally Added On: June 23rd, 2011]
- A Dose of Reality on Alternative Stem Cell Treatments: What you don't know can hurt you [Last Updated On: June 28th, 2011] [Originally Added On: June 28th, 2011]
- Governor Tim Pawlenty Discusses Stem Cell Research [Last Updated On: June 30th, 2011] [Originally Added On: June 30th, 2011]
- The EU and stem cell research [Last Updated On: July 5th, 2011] [Originally Added On: July 5th, 2011]
- Parkinson's Disease: Spotlight on Stem Cell Research - Jeff Bronstein [Last Updated On: July 6th, 2011] [Originally Added On: July 6th, 2011]
- Cardiovascular Therapies: Spotlight on Stem Cell Research - Yung-Wei Chi [Last Updated On: July 7th, 2011] [Originally Added On: July 7th, 2011]
- Spotlight on Cancer Stem Cell Research [Last Updated On: July 11th, 2011] [Originally Added On: July 11th, 2011]
- A Stem Cell Story [Last Updated On: July 12th, 2011] [Originally Added On: July 12th, 2011]
- Bishop Blair bars support for Komen breast cancer group [Last Updated On: July 13th, 2011] [Originally Added On: July 13th, 2011]
- Stem Cell Research In Toronto [Last Updated On: July 14th, 2011] [Originally Added On: July 14th, 2011]
- Arthritis: Spotlight on Stem Cell Research - Introduction [Last Updated On: July 14th, 2011] [Originally Added On: July 14th, 2011]
- Huntington's Disease: Spotlight on Stem Cell Research 2007 - Han Keirstead [Last Updated On: July 15th, 2011] [Originally Added On: July 15th, 2011]
- TMconfUK2011-08 - Stem Cell Research in the UK - Prof Charles Ffrench-Constant [Last Updated On: July 16th, 2011] [Originally Added On: July 16th, 2011]
- UCSF opens stem cell research building [Last Updated On: July 16th, 2011] [Originally Added On: July 16th, 2011]
- HIV/AIDS: Spotlight on Stem Cell Research - John Zaia [Last Updated On: July 17th, 2011] [Originally Added On: July 17th, 2011]
- Deafness: Spotlight on Stem Cell Research - Ebenezer Yamoah [Last Updated On: July 22nd, 2011] [Originally Added On: July 22nd, 2011]
- Spotlight on Basic Stem Cell Research - Irv Weissman [Last Updated On: July 25th, 2011] [Originally Added On: July 25th, 2011]
- Diabetes: Spotlight on Stem Cell Research - Peter Butler [Last Updated On: July 27th, 2011] [Originally Added On: July 27th, 2011]
- Parkinson's Disease: Spotlight on Stem Cell Research - Arnold Kriegstein [Last Updated On: July 27th, 2011] [Originally Added On: July 27th, 2011]
- HIV/AIDS: Spotlight on Stem Cell Research - Loren Leeds [Last Updated On: July 27th, 2011] [Originally Added On: July 27th, 2011]
- Alzheimer's Disease: Spotlight on Stem Cell Research - Leeza Gibbons [Last Updated On: August 2nd, 2011] [Originally Added On: August 2nd, 2011]
- Geron's Embryonic Stem Cell Clinical Trial for Spinal Cord Injury [Last Updated On: August 3rd, 2011] [Originally Added On: August 3rd, 2011]
- The Skin Gun stem cell research [Last Updated On: August 10th, 2011] [Originally Added On: August 10th, 2011]
- Deafness: Spotlight on Stem Cell Research - Karen Doyle [Last Updated On: August 10th, 2011] [Originally Added On: August 10th, 2011]
- Stem Cell Research: Huntington's Disease [Last Updated On: August 14th, 2011] [Originally Added On: August 14th, 2011]
- Adult and Non-Embryonic Stem Cell Research Conference at Notre Dame [Last Updated On: August 20th, 2011] [Originally Added On: August 20th, 2011]
- Stemcell Research and Aging - Panel 1 [Last Updated On: August 22nd, 2011] [Originally Added On: August 22nd, 2011]
- Texans for Stem Cell Research Learn for Life: KXAN Coverage Aired August 16th, 2011 [Last Updated On: August 24th, 2011] [Originally Added On: August 24th, 2011]
- Stem Cell Research: Macular Degeneration [Last Updated On: September 18th, 2011] [Originally Added On: September 18th, 2011]
- Brilliant Minds - Stem Cell Research | Tomorrow Today [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Ethics of Stem Cell Research (1) [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- Legal and Public Policy Dimensions of Stem Cell Research [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- Stem cell symposium [Last Updated On: October 2nd, 2011] [Originally Added On: October 2nd, 2011]
- StemCONN 2011, The Latest in Stem Cell Research [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- Arthritis: Spotlight on Stem Cell Research - Mark Genovese [Last Updated On: October 7th, 2011] [Originally Added On: October 7th, 2011]
- Judy Roberson: Patient advocates drive stem cell scientists [Last Updated On: October 8th, 2011] [Originally Added On: October 8th, 2011]
- Sam Harris - Stem Cells and Morality [Last Updated On: October 8th, 2011] [Originally Added On: October 8th, 2011]
- Stem Cell Research, Ethics and Religion [Last Updated On: October 9th, 2011] [Originally Added On: October 9th, 2011]
- Stem Cells: Fulfilling the Promise - 2011 CIRM Grantee Meeting [Last Updated On: October 10th, 2011] [Originally Added On: October 10th, 2011]
- The Skin Gun (Stem Cell research to replace burnt off skin. Done in 3 days!) [Last Updated On: October 13th, 2011] [Originally Added On: October 13th, 2011]
- Alzheimer's Stem Cell Research Patient Advocate Spotlight: The Faces of Neurodegenerative Disease - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- Life in the Balance: Perspectives on Stem Cell Research - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- Stem Cell Research Funding Halt - Video [Last Updated On: October 19th, 2011] [Originally Added On: October 19th, 2011]
- Vatican lending hand in adult stem cell research - Video [Last Updated On: October 20th, 2011] [Originally Added On: October 20th, 2011]
- First Spinal-Cord Surgery With Stem Cells - Video [Last Updated On: October 21st, 2011] [Originally Added On: October 21st, 2011]
- Michael J. Fox Embryonic Stem Cell Research - Video [Last Updated On: October 22nd, 2011] [Originally Added On: October 22nd, 2011]
- stem cell research - Video [Last Updated On: October 22nd, 2011] [Originally Added On: October 22nd, 2011]
- Gayle Atteberry - Cloning [Last Updated On: November 5th, 2011] [Originally Added On: November 5th, 2011]
- It Takes Nerve: UC Irvine - Sue [Last Updated On: November 6th, 2011] [Originally Added On: November 6th, 2011]
- Embryonic Stem Cell Research - Video [Last Updated On: November 9th, 2011] [Originally Added On: November 9th, 2011]
- Adult Stem Cell Research Far Ahead of Embryonic - Video [Last Updated On: November 10th, 2011] [Originally Added On: November 10th, 2011]
- Is stem cell research a growing concern .flv - Video [Last Updated On: November 10th, 2011] [Originally Added On: November 10th, 2011]
- Forbes Discusses Stem Cell Research - Video [Last Updated On: November 14th, 2011] [Originally Added On: November 14th, 2011]
- Stem Cell Research Presentation - Video [Last Updated On: November 16th, 2011] [Originally Added On: November 16th, 2011]
- Benedict XVI: No embryonic stem cell research - Video [Last Updated On: November 28th, 2011] [Originally Added On: November 28th, 2011]
- Batten Disease: Spotlight on Stem Cell Research - A Father's Story - Video [Last Updated On: November 30th, 2011] [Originally Added On: November 30th, 2011]
- CIS 111 Digital Media Project - Stem Cell Research - Video [Last Updated On: December 13th, 2011] [Originally Added On: December 13th, 2011]
- Regenerative Medicine and Applications of Stem Cell Research - Video [Last Updated On: December 20th, 2011] [Originally Added On: December 20th, 2011]
- Stem Cell Research Today: Larry Goldstein - CIRM Science Writer's Seminar - Video [Last Updated On: December 22nd, 2011] [Originally Added On: December 22nd, 2011]
- CIRM Bridges Award: Building California's Stem Cell Research Workforce - Video [Last Updated On: December 22nd, 2011] [Originally Added On: December 22nd, 2011]