Single-cell and spatial atlases of spinal cord injury in the Tabulae Paralytica – Nature.com

Posted: Published on June 21st, 2024

This post was added by Dr Simmons

Sofroniew, M. V. Dissecting spinal cord regeneration. Nature 557, 343350 (2018).

Article ADS CAS Google Scholar

Anderson, M. A. et al. Natural and targeted circuit reorganization after spinal cord injury. Nature Neurosci. 25, 15841596 (2022).

Courtine, G. & Sofroniew, M. V. Spinal cord repair: advances in biology and technology. Nat. Med. 25, 898908 (2019).

Article CAS Google Scholar

Ahuja, C. S. et al. Traumatic spinal cord injury. Nat. Rev. Dis. Primers 3, 17018 (2017).

Article Google Scholar

Rowald, A. et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat. Med. 28, 260271 (2022).

Article CAS Google Scholar

Squair, J. W. et al. Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature 590, 308314 (2021).

Article ADS CAS Google Scholar

Wagner, F. B. et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563, 6571 (2018).

Article ADS CAS Google Scholar

Kathe, C. et al. The neurons that restore walking after paralysis. Nature 611, 540547 (2022).

Popovich, P. G., Wei, P. & Stokes, B. T. Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J. Comp. Neurol. 377, 443464 (1997).

Article CAS Google Scholar

Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195200 (2016).

Article ADS CAS Google Scholar

Squair, J. W., Gautier, M., Sofroniew, M. V., Courtine, G. & Anderson, M. A. Engineering spinal cord repair. Curr. Opin. Biotech. 72, 4853 (2021).

Article CAS Google Scholar

Asboth, L. et al. Cortico-reticulo-spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nat. Neurosci. 21, 576588 (2018).

Article CAS Google Scholar

Scheff, S. W., Rabchevsky, A. G., Fugaccia, I., Main, J. A. & Lumpp, J. E. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J. Neurotraum. 20, 179193 (2003).

Article Google Scholar

Dusart, I. & Schwab, M. E. Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur. J. Neurosci. 6, 712724 (1994).

Article CAS Google Scholar

Zappia, L. & Oshlack, A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. Gigascience 7, giy083 (2018).

Article Google Scholar

Milich, L. M. et al. Single-cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord. J. Exp. Med. 218, e20210040 (2021).

Article CAS Google Scholar

Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 735 (2010).

Article Google Scholar

Faulkner, J. R. et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. 24, 21432155 (2004).

Article CAS Google Scholar

Herrmann, J. E. et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J. Neurosci. 28, 72317243 (2008).

Article CAS Google Scholar

Wanner, I. B. et al. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J. Neurosci. 33, 1287012886 (2013).

Article CAS Google Scholar

Zheng, S. C. et al. Universal prediction of cell-cycle position using transfer learning. Genome Biol. 23, 41 (2022).

Article CAS Google Scholar

Munji, R. N. et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core bloodbrain barrier dysfunction module. Nat. Neurosci. 22, 18921902 (2019).

Article CAS Google Scholar

Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 9991014.e22 (2018).

Article CAS Google Scholar

Yasuda, K. et al. Drug transporters on arachnoid barrier cells contribute to the bloodcerebrospinal fluid barrier. Drug Metab. Dispos. 41, 923931 (2013).

Article CAS Google Scholar

Dewar, D., Underhill, S. M. & Goldberg, M. P. Oligodendrocytes and ischemic brain injury. J. Cereb. Blood Flow Metabol. 23, 263274 (2002).

Article Google Scholar

Petracca, Y. L. et al. The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord. Development 143, 880891 (2016).

CAS Google Scholar

Vgh, B. et al. The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain. Histol. Histopathol. 19, 607628 (2004).

Google Scholar

Squair, J. W. et al. Recovery of walking after paralysis by regenerating characterized neurons to their natural target region. Science 381, 13381345 (2023).

Courtine, G. et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 14, 6974 (2008).

Article CAS Google Scholar

Skinnider, M. A. et al. Cell type prioritization in single-cell data. Nat. Biotechnol. 39, 3034 (2021).

Article CAS Google Scholar

Squair, J. W., Skinnider, M. A., Gautier, M., Foster, L. J. & Courtine, G. Prioritization of cell types responsive to biological perturbations in single-cell data with Augur. Nat. Protoc. 16, 38363873 (2021).

Renthal, W. et al. Transcriptional reprogramming of distinct peripheral sensory neuron subtypes after axonal injury. Neuron 108, 128144.e9 (2020).

Nguyen, M. Q., Pichon, C. E. L. & Ryba, N. Stereotyped transcriptomic transformation of somatosensory neurons in response to injury. eLife 8, e49679 (2019).

Article Google Scholar

Cajal, S. R. Y. & May, R. M. Cajals Degeneration and Regeneration of the Nervous System (Oxford Univ. Press, 1991).

Sperry, R. W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl Acad. Sci. USA 50, 703710 (1963).

Article ADS CAS Google Scholar

Cajal, S. R. Y. Degeneration and Regeneration of the Nervous System (Oxford Univ. Press, 1928).

Anderson, M. A. et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561, 396400 (2018).

Article ADS CAS Google Scholar

Harel, N. Y. & Strittmatter, S. M. Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury?. Nat. Rev. Neurosci. 7, 603616 (2006).

Article CAS Google Scholar

Mironova, Y. A. & Giger, R. J. Where no synapses go: gatekeepers of circuit remodeling and synaptic strength. Trends Neurosci. 36, 363373 (2013).

Article CAS Google Scholar

Lin, A. C. & Holt, C. E. Local translation and directional steering in axons. EMBO J. 26, 37293736 (2007).

Article CAS Google Scholar

Short, D., Masry, W. E. & Jones, P. High dose methylprednisolone in the management of acute spinal cord injurya systematic review from a clinical perspective. Spinal Cord 38, 273286 (2000).

Article CAS Google Scholar

Bracken, M. B. Efficacy of methylprednisolone in acute spinal cord injury. JAMA 251, 45 (1984).

Article CAS Google Scholar

Hurlbert, R. J. Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J. Neurosurg. Spine 93, 17 (2000).

Article CAS Google Scholar

Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626638 (2016).

Article CAS Google Scholar

Gal-Oz, S. T. et al. ImmGen report: sexual dimorphism in the immune system transcriptome. Nat. Commun. 10, 4295 (2019).

Article ADS Google Scholar

Mattucci, S. et al. Basic biomechanics of spinal cord injuryhow injuries happen in people and how animal models have informed our understanding. Clin. Biomech. 64, 5868 (2018).

Article Google Scholar

OShea, T. M. et al. Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice. Nat. Commun. 13, 5702 (2022).

Article ADS Google Scholar

Squair, J. W. et al. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12, 5692 (2021).

Article ADS CAS Google Scholar

Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403411 (2021).

Article CAS Google Scholar

Kang, J. B. et al. Efficient and precise single-cell reference atlas mapping with Symphony. Nat. Commun. 12, 5890 (2021).

Article ADS CAS Google Scholar

Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975978 (2017).

Article CAS Google Scholar

Schwarzschild, M. A., Cole, R. L. & Hyman, S. E. Glutamate, but not dopamine, stimulates stress-activated protein kinase and AP-1-mediated transcription in striatal neurons. J. Neurosci. 17, 34553466 (1997).

Article CAS Google Scholar

Burda, J. E. et al. Divergent transcriptional regulation of astrocyte reactivity across disorders. Nature 606, 557564 (2022).

Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110121 (2010).

Article CAS Google Scholar

More:
Single-cell and spatial atlases of spinal cord injury in the Tabulae Paralytica - Nature.com

Related Posts
This entry was posted in Spinal Cord Injury Treatment. Bookmark the permalink.

Comments are closed.