Steering stem cells with magnets

Posted: Published on July 16th, 2013

This post was added by Dr. Richardson

Public release date: 16-Jul-2013 [ | E-mail | Share ]

Contact: Quinn Eastman qeastma@emory.edu 404-727-7829 Emory Health Sciences

Magnets could be a tool for directing stem cells' healing powers to treat conditions such as heart disease or vascular disease.

By feeding stem cells tiny particles made of iron oxide, scientists at Emory and Georgia Tech can use magnets to attract the cells to a particular location in the body after intravenous injection.

The results are published online in the journal Small and will appear in an upcoming issue.

The paper was a result of collaboration between the laboratories of W. Robert Taylor, MD, PhD, and Gang Bao, PhD. Taylor is professor of medicine and biomedical engineering and director of the Division of Cardiology at Emory University School of Medicine. Bao is professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

Co-first authors of the paper are postdoctoral fellows Natalia Landazuri, PhD, and Sheng Tong, PhD. Landazuri is now at the Karolinska Institute in Sweden.

The type of cells used in the study, mesenchymal stem cells, are not embryonic stem cells. Mesenchymal stem cells can be readily obtained from adult tissues such as bone marrow or fat. They are capable of becoming bone, fat and cartilage cells, but not other types of cell such as muscle or brain. They secrete a variety of nourishing and anti-inflammatory factors, which could make them valuable tools for treating conditions such as cardiovascular disease or autoimmune disorders.

Iron oxide nanoparticles are already FDA-approved for diagnostic purposes with MRI (magnetic resonance imaging). Other scientists have tried to load stem cells with similar particles, but found that the coating on the particles was toxic or changed the cells' properties. The nanoparticles used in this study have a polyethylene glycol coating that protects the cell from damage. Another unique feature is that the Emory/Tech team used a magnetic field to push the particles into the cells, rather than chemical agents used previously.

"We were able to load the cells with a lot of these nanoparticles and we showed clearly that the cells were not harmed," Taylor says. "The coating is unique and thus there was no change in viability and perhaps even more importantly, we didn't see any change in the characteristics of the stem cells, such as their capacity to differentiate."

View original post here:
Steering stem cells with magnets

Related Posts
This entry was posted in Mesenchymal Stem Cells. Bookmark the permalink.

Comments are closed.