PUBLIC RELEASE DATE:
1-Jun-2014
Contact: Sarah Avery sarah.avery@duke.edu 919-660-1306 Duke University Medical Center
DURHAM, N.C. A collaborative effort between Duke Medicine researchers and neurosurgeons and scientists in China has produced new genetic insights into a rare and deadly form of childhood and young adult brain cancer called brainstem glioma.
The researchers identified a genetic mutation in the tumor cells that plays a role in both the growth and the death of a cell. Additionally, the mutation to the newly identified gene may also contribute to the tumor's resistance to radiation.
The findings, published online in the journal Nature Genetics on June 1, 2014, provide both immediate and long-term benefits. Knowing that this mutation may render radiation ineffective, patients could be spared that therapy. The mutation would also serve as a strong candidate for drug development.
The researchers conducted genetic tests and found that many of the tumor cells had a mutation in a gene called PPM1D, which causes cells to proliferate and avoid natural death. It is the first time this mutation has been found to be a major driving force in the development of brainstem gliomas; it is not evident in other brain tumors.
If tumors have this PPM1D mutation, they do not have another more common genetic mutation to the TP53 gene, a tumor suppressor that, when defective, is linked to half of all cancers.
"This finding has immediate clinical applications, because either mutation - PPM1D or TP53 cause the tumor cells to be resistant to radiation," said senior author Hai Yan, M.D., Ph.D., a professor of pathology at Duke University School of Medicine. "Knowing that could spare patients from an ineffective treatment approach."
Additionally, the PPM1D genetic mutation is a strong candidate for new drug development.
See the rest here:
Newly identified brain cancer mutation will aid drug development