Stem cell reprogramming factor controls change in cellular energy generation – Phys.Org

Posted: Published on March 8th, 2017

This post was added by Dr. Richardson

March 8, 2017 Credit: University of Tsukuba

University of Tsukuba-led researchers explored the function of the reprogramming factor KLF4 in production of induced pluripotent stem cells (iPSCs). KLF4 was shown to bind upstream of the Tcl1 target gene, which controls a metabolic change in energy generation during the acquisition of cellular pluripotency. This helps explain how cells turn back the developmental clock from adult to stem cell, and could be harnessed to improve efficiency or limit genetic damage during iPSC generation.

A little over 10 years ago, the first reprogramming of adult cells into undifferentiated stem cells was achieved. These induced pluripotent stem cells (iPSCs) have the ability to become almost any cell type and can divide indefinitely, so share many features with embryonic stem cells. Such characteristics enable iPSCs to be used in several applications of regenerative medicine, particularly because they can be derived from an individual's own cells so tissue rejection problems are not encountered. They can also be programmed to develop into rare or inaccessible cell types, used to screen novel drugs, and studied to understand the cellular basis of disease or reprogramming.

However, while the genetic factors responsible for reprogramming are well known, the mechanisms underlying the responses to induced gene expression changes are not as clear.

Now, research led by the University of Tsukuba has solved the mystery surrounding one of the reprogramming factors, KLF4. The study was published in Stem Cell Reports.

KLF4 together with other reprogramming transcription factors is used in the lab to force the expression of genes in somatic cells (adult non-germline cells) in the development of iPSCs. Somatic cells generate their energy in an oxygen-fueled process called oxidative phosphorylation, which takes place in the mitochondria, also known as cellular powerhouses.

In contrast, stem cells have small mitochondria and use glycolysis as an alternative biochemical pathway to generate energy. This series of reactions can be anaerobic, so more suited to their typically low-oxygen environment, but also provides the supply of metabolic intermediates necessary for rapid growth and division.

University of Tsukuba researchers developed a gene transfer system that allowed iPSC reprogramming to only occur in the presence of KLF4, thus focusing exclusively on its role in the process. They then used genome-wide analysis to search for genes switched on by KLF4 at a late stage of reprogramming.

"We found that the Tcl1 gene was upregulated by KLF4 binding to its enhancer and promoter regions," study co-first author Ken Nishimura says. "KLF4 also caused the binding of another reprogramming factor, OCT4, to the Tcl1 promoter."

The team discovered that the TCL1 protein played a key role in increasing glycolysis by activating a different metabolic pathway that is important for the self-renewal of stem cells.

"We also showed that TCL1 inhibits a mitochondrial enzyme required for in oxidative phosphorylation, leading to a reduction in oxygen consumption of the cells", co-first author Shiho Aizawa explains. "This was matched by increased glucose uptake for glycolysis, revealing that TCL1 promotes the metabolic switch in energy generation necessary for cells to acquire pluripotency."

Explore further: Reprogramming the oocyte

More information: Ken Nishimura et al. A Role for KLF4 in Promoting the Metabolic Shift via TCL1 during Induced Pluripotent Stem Cell Generation, Stem Cell Reports (2017). DOI: 10.1016/j.stemcr.2017.01.026

(Phys.org)Among other things, the egg is optimized to process the sperm genome. The cytoplasmic factors that make this possible also give the egg the ability to reprogram the nuclei from other kinds of cells if these nuclei ...

Scientists from A*STAR's Genome Institute of Singapore (GIS) have discovered metabolic rejuvenation factors in eggs. This critical finding furthers our understanding of how cellular metabolism changes during aging, and during ...

Scientists have discovered the gene essential for chemically reprogramming human amniotic stem cells into a more versatile state similar to embryonic stem cells, in research led by UCL and Heinrich Heine University.

In a new Cell Reports paper, a team led by John P. Cooke, M.D., Ph.D., of the Houston Methodist Research Institute, has identified and characterized a biological factor critical to the transformation of adult somatic cells ...

Cell reprogramming does not happen exactly as we thought. In the pages of the journal Science, a team from the Spanish National Cancer Research Centre (CNIO) has shown that tissue damage is a relevant factor for cells to ...

How do you improve a Nobel Prize-winning discovery? Add a debilitating disease-causing gene mutation.

The International Potato Center (CIP) launched a series of experiments to discover if potatoes can grow under Mars atmospheric conditions and thereby prove they are also able to grow in extreme climates on Earth. This Phase ...

EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human ...

An international research team has discovered a biochemical pathway that is responsible for the development of moss cuticles. These waxy coverings of epidermal cells are the outer layer of plants and protect them from water ...

A new study involving biologists from Monash University Australia has found that despite their very different ancestors, dolphins and crocodiles evolved similarly-shaped skulls to feed on similar prey.

A new study by G. William Arends Professor of Microbiology at the University of Illinois Bill Metcalf with postdoctoral Fellow Dipti Nayak has documented the use of CRISPR-Cas9 mediated genome editing in the third domain ...

Proteins, those basic components of cells and tissues, carry out many biological functions by working with partners in networks. The dynamic nature of these networks - where proteins interact with different partners at different ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Go here to read the rest:
Stem cell reprogramming factor controls change in cellular energy generation - Phys.Org

Related Posts
This entry was posted in Stem Cell Research. Bookmark the permalink.

Comments are closed.