Antigen presentation plays positive roles in the regenerative response to cardiac injury in zebrafish – Nature.com

Posted: Published on April 30th, 2024

This post was added by Dr Simmons

Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J. Am. Coll. Cardiol. 76, 29823021 (2020).

Article PubMed PubMed Central Google Scholar

Talman, V. & Ruskoaho, H. Cardiac fibrosis in myocardial infarction - from repair and remodeling to regeneration. Cell Tissue Res. 365, 563581 (2016).

Article CAS PubMed PubMed Central Google Scholar

Anzai, A., Ko, S. & Fukuda, K. Immune and inflammatory networks in myocardial infarction: current research and its potential implications for the clinic. Int. J. Mol. Sci. 23, 5214 (2022).

Article CAS PubMed PubMed Central Google Scholar

Cheng, B., Chen, H. C., Chou, I. W., Tang, T. W. H. & Hsieh, P. C. H. Harnessing the early post-injury inflammatory responses for cardiac regeneration. J. Biomed. Sci. 24, 7 (2017).

Article PubMed PubMed Central Google Scholar

Mallat, Z. & Binder, C. J. The why and how of adaptive immune responses in ischemic cardiovascular disease. Nat. Cardiovasc. Res. 1, 431444 (2022).

Article PubMed PubMed Central Google Scholar

Sattler, S., Fairchild, P., Watt, F. M., Rosenthal, N. & Harding, S. E. The adaptive immune response to cardiac injury - the true roadblock to effective regenerative therapies? npj Regen. Med. 2, 19 (2017).

Article PubMed PubMed Central Google Scholar

Hofmann, U. & Frantz, S. Role of T-cells in myocardial infarction. Eur. Heart J. 37, 873879 (2016).

Article CAS PubMed Google Scholar

Van der Borght, K. et al. Myocardial infarction primes autoreactive T cells through activation of dendritic cells. Cell Rep. 18, 30053017 (2017).

Article PubMed PubMed Central Google Scholar

DeBerge, M. et al. Monocytes prime autoreactive T cells after myocardial infarction. Am. J. Physiol. - Hear. Circ. Physiol. 318, H116H123 (2020).

Article CAS Google Scholar

Hofmann, U. et al. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation 125, 16521663 (2012).

Article CAS PubMed Google Scholar

Roche, P. A. & Furuta, K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15, 203216 (2015).

Article CAS PubMed PubMed Central Google Scholar

Unanue, E. R., Turk, V. & Neefjes, J. Variations in MHC class II antigen processing and presentation in health and disease. Annu. Rev. Immunol. 34, 265297 (2016).

Article CAS PubMed Google Scholar

Lugo-Villarino, G. et al. Identification of dendritic antigen-presenting cells in the zebrafish. Proc. Natl. Acad. Sci. USA 107, 1585015855 (2010).

Article ADS CAS PubMed PubMed Central Google Scholar

Trajano, L. F. & Smart, N. Immunomodulation for optimal cardiac regeneration: insights from comparative analyses. npj Regen. Med. 6, 8 (2021).

Article Google Scholar

Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science. 298, 21882190 (2002).

Article ADS CAS PubMed Google Scholar

Chablais, F., Veit, J., Rainer, G. & Jawiska, A. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev. Biol. 11, 21 (2011).

Article PubMed PubMed Central Google Scholar

Gonzlez-Rosa, J. M. & Mercader, N. Cryoinjury as a myocardial infarction model for the study of cardiac regeneration in the zebrafish. Nat. Protoc. 7, 782788 (2012).

Article PubMed Google Scholar

Wang, J. et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138, 34213430 (2011).

Article CAS PubMed PubMed Central Google Scholar

Schnabel, K., Wu, C. C., Kurth, T. & Weidinger, G. Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS One 6, e18503 (2011).

Article ADS CAS PubMed PubMed Central Google Scholar

Mnch, J., Grivas, D., Gonzlez-Rajal, ., Torregrosa-Carrin, R. & de la Pompa, J. L. Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart. Development 144, 14251440 (2017).

PubMed Google Scholar

Marn-Juez, R. et al. Fast revascularization of the injured area is essential to support zebrafish heart regeneration. Proc. Natl. Acad. Sci. USA 113, 1123711242 (2016).

Article ADS PubMed PubMed Central Google Scholar

Marn-Juez, R. et al. Coronary revascularization during heart regeneration is regulated by epicardial and endocardial cues and forms a scaffold for cardiomyocyte repopulation. Dev. Cell 51, 503515 (2019).

Article PubMed PubMed Central Google Scholar

Honkoop, H. et al. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. Elife 8, e50163 (2019).

Article PubMed PubMed Central Google Scholar

Gonzlez-Rosa, J. M., Martn, V., Peralta, M., Torres, M. & Mercader, N. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138, 16631674 (2011).

Article PubMed Google Scholar

Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res. 119, 91112 (2016).

Article CAS PubMed PubMed Central Google Scholar

Ryan, R., Moyse, B. R. & Richardson, R. J. Zebrafish cardiac regeneration - looking beyond cardiomyocytes to a complex microenvironment. Histochem. Cell Biol. 154, 533548 (2020).

Article CAS PubMed PubMed Central Google Scholar

Bevan, L. et al. Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish. Cardiovasc. Res. 116, 13571371 (2019).

Article PubMed Central Google Scholar

Lai, S.-L., Marn-Juez, R. & Stainier, D. Y. R. Immune responses in cardiac repair and regeneration: a comparative point of view. Cell. Mol. Life Sci. 76, 13651380 (2019).

Article CAS PubMed Google Scholar

Reuter, H. et al. Aging activates the immune system and alters the regenerative capacity in the zebrafish heart. Cells 11, 345 (2022).

Article CAS PubMed PubMed Central Google Scholar

Lai, S.-L. et al. Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. Elife 6, e25605 (2017).

Article PubMed PubMed Central Google Scholar

Simes, F. C. & Riley, P. R. Immune cells in cardiac repair and regeneration. Development 149, dev199906 (2022).

Article PubMed PubMed Central Google Scholar

Aurora, A. B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 124, 13821392 (2014).

Article CAS PubMed PubMed Central Google Scholar

Tan, Y., Duan, X., Wang, B., Liu, X. & Zhan, Z. Murine neonatal cardiac B cells promote cardiomyocyte proliferation and heart regeneration. npj Regen. Med. 8, 7 (2023).

Article CAS PubMed PubMed Central Google Scholar

Li, Y., Li, H., Pei, J., Hu, S. & Nie, Y. Transplantation of murine neonatal cardiac macrophage improves adult cardiac repair. Cellular and Molecular Immunology 18, 492494 (2021).

Article CAS PubMed Google Scholar

Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl. Acad. Sci. USA 111, 1602916034 (2014).

Article ADS CAS PubMed PubMed Central Google Scholar

Schrder, B. The multifaceted roles of the invariant chain CD74 - More than just a chaperone. Biochim. Biophys. Acta - Mol. Cell Res. 1863, 12691281 (2016).

Article Google Scholar

Hui, S. P. et al. Zebrafish regulatory T cells mediate organ-specific regenerative programs. Dev. Cell 43, 659672 (2017).

Article CAS PubMed Google Scholar

de Preux Charles, A. S., Bise, T., Baier, F., Sallin, P. & Jawiska, A. Preconditioning boosts regenerative programmes in the adult zebrafish heart. Open Biol. 6, 160101 (2016).

Article PubMed PubMed Central Google Scholar

Wittamer, V., Bertrand, J. Y., Gutschow, P. W. & Traver, D. Characterization of the mononuclear phagocyte system in zebrafish. Blood 117, 71267135 (2011).

Article CAS PubMed Google Scholar

Bertrand, J. Y., Kim, A. D., Teng, S. & Traver, D. CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Development 135, 18531862 (2008).

Article CAS PubMed Google Scholar

Poon, K. L., Liebling, M., Kondrychyn, I., Garcia-Lecea, M. & Korzh, V. Zebrafish cardiac enhancer trap lines: new tools for in vivo studies of cardiovascular development and disease. Dev. Dyn. 239, 914926 (2010).

Article PubMed Google Scholar

Wang, Z. et al. Cell-type-specific gene regulatory networks underlying murine neonatal heart regeneration at single-cell resolution. Cell Rep. 33, 108472 (2020).

Article CAS PubMed PubMed Central Google Scholar

Hu, B. et al. Origin and function of activated fibroblast states during zebrafish heart regeneration. Nat. Genet. 54, 12271237 (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Dee, C. T. et al. CD4-transgenic zebrafish reveal tissue-resident Th2- and regulatory T celllike populations and diverse mononuclear phagocytes. J. Immunol. 197, 35203530 (2016).

Article CAS PubMed PubMed Central Google Scholar

Langenau, D. M. et al. Suppression of apoptosis by bcl-2 overexpression in lymphoid cells of transgenic zebrafish. Blood 105, 32783285 (2005).

Article CAS PubMed Google Scholar

Imbratta, C., Hussein, H., Andris, F. & Verdeil, G. c-MAF, a Swiss army knife for tolerance in lymphocytes. Front. Immunol. 11, 206 (2020).

Article CAS PubMed PubMed Central Google Scholar

Peng, S., Lalani, S., Leavenworth, J. W., Ho, I. C. & Pauza, M. E. c-Maf interacts with c-Myb to down-regulate Bcl-2 expression and increase apoptosis in peripheral CD4 cells. Eur. J. Immunol. 37, 28682880 (2007).

Article CAS PubMed Google Scholar

El-Sammak, H. et al. A Vegfc-Emilin2a-Cxcl8a signaling axis required for zebrafish cardiac regeneration. Circ. Res. 130, 10141029 (2022).

Article CAS PubMed PubMed Central Google Scholar

DUva, G. et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat. Cell Biol. 17, 627638 (2015).

Article PubMed Google Scholar

Bersell, K., Arab, S., Haring, B. & Khn, B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257270 (2009).

Article CAS PubMed Google Scholar

Continue reading here:
Antigen presentation plays positive roles in the regenerative response to cardiac injury in zebrafish - Nature.com

Related Posts
This entry was posted in Cardiac Regeneration. Bookmark the permalink.

Comments are closed.