Autism – Psych Central

Posted: Published on September 24th, 2015

This post was added by Dr Simmons

Autism Isolated in worlds of their own, people with autism appear indifferent and remote and are unable to form emotional bonds with others. Although people with this baffling brain disorder can display a wide range of symptoms and disability, many are incapable of understanding other people's thoughts, feelings, and needs. Often, language and intelligence fail to develop fully, making communication and social relationships difficult. Many people with autism engage in repetitive activities, like rocking or banging their heads, or rigidly following familiar patterns in their everyday routines. Some are painfully sensitive to sound, touch, sight, or smell.

Children with autism do not follow the typical patterns of child development. In some children, hints of future problems may be apparent from birth. In most cases, the problems become more noticeable as the child slips farther behind other children the same age. Other children start off well enough. But between 18 and 36 months old, they suddenly reject people, act strangely, and lose language and social skills they had already acquired.

But there is help-and hope. Gone are the days when people with autism were isolated, typically sent away to institutions. Today, many youngsters can be helped to attend school with other children. Methods are available to help improve their social, language, and academic skills. Even though more than 60 percent of adults with autism continue to need care throughout their lives, some programs are beginning to demonstrate that with appropriate support, many people with autism can be trained to do meaningful work and participate in the life of the community.

Autism is found in every country and region of the world, and in families of all racial, ethnic, religious, and economic backgrounds. Emerging in childhood, it affects about 1 or 2 people in every thousand and is three to four times more common in boys than girls. Girls with the disorder, however, tend to have more severe symptoms and lower intelligence. In addition to loss of personal potential, the cost of health and educational services to those affected exceeds $3 billion each year. So, at some level, autism affects us all.

This booklet is provided by the National Institute of Mental Health (NIMH), the Federal agency that conducts and supports research on mental and brain disorders, including autism. NIMH is part of the National Institutes of Health (NIH), which is the Federal Government's primary agency for biomedical and behavioral research. Research on autism and related disorders is also sponsored by the National Institute of Child Health and Human Development (NICHD), National Institute on Deafness and Other Communication Disorders (NIDCD), and National Institute of Neurological Disorders and Stroke (NINDS).

NIMH scientists are dedicated to understanding the workings and interrelationships of the various regions of the brain, and to developing preventive measures and new treatments for disorders like autism that handicap people in school, work, and social relationships.

Up-to-date information on autism and the role of NIMH in identifying underlying causes and effective treatments are included in this pamphlet. Also described are symptoms and diagnostic procedures, treatment options, strategies for coping, and sources of information and support.

The individuals referred to in this brochure are not real, but their stories are based on interviews with parents who have children with autism.

Top

Autism is a brain disorder that typically affects a person's ability to communicate, form relationships with others, and respond appropriately to the environment. Some people with autism are relatively high-functioning, with speech and intelligence intact. Others are mentally retarded, mute, or have serious language delays. For some, autism makes them seem closed off and shut down; others seem locked into repetitive behaviors and rigid patterns of thinking.

Although people with autism do not have exactly the same symptoms and deficits, they tend to share certain social, communication, motor, and sensory problems that affect their behavior in predictable ways.

NOTE: This list is not intended to be used to assess whether a particular child has autism. Diagnosis should only be done by a specialist using highly detailed background information and behavioral observations.

In contrast, most children with autism seem to have tremendous difficulty learning to engage in the give-and-take of everyday human interaction. Even in the first few months of life, many do not interact and they avoid eye contact. They seem to prefer being alone. They may resist attention and affection or passively accept hugs and cuddling. Later, they seldom seek comfort or respond to anger or affection. Unlike other children, they rarely become upset when the parent leaves or show pleasure when the parent returns. Parents who looked forward to the joys of cuddling, teaching, and playing with their child may feel crushed by this lack of response.

Children with autism also take longer to learn to interpret what others are thinking and feeling. Subtle social cues-whether a smile, a wink, or a grimace-may have little meaning. To a child who misses these cues, "Come here," always means the same thing, whether the speaker is smiling and extending her arms for a hug or squinting and planting her fists on her hips. Without the ability to interpret gestures and facial expressions, the social world may seem bewildering.

To compound the problem, people with autism have problems seeing things from another person's perspective. Most 5-year-olds understand that other people have different information, feelings, and goals than they have. A person with autism may lack such understanding. This inability leaves them unable to predict or understand other people's actions.

Some people with autism also tend to be physically aggressive at times, making social relationships still more difficult. Some lose control, particularly when they're in a strange or overwhelming environment, or when angry and frustrated. They are capable at times of breaking things, attacking others, or harming themselves. Alan, for example, may fall into a rage, biting and kicking when he is frustrated or angry. Paul, when tense or overwhelmed, may break a window or throw things. Others are self-destructive, banging their heads, pulling their hair, or biting their arms.

Research shows that about half of the children diagnosed with autism remain mute throughout their lives. Some infants who later show signs of autism do coo and babble during the first 6 months of life. But they soon stop. Although they may learn to communicate using sign language or special electronic equipment, they may never speak. Others may be delayed, developing language as late as age 5 to 8.

Those who do speak often use language in unusual ways. Some seem unable to combine words into meaningful sentences. Some speak only single words. Others repeat the same phrase no matter what the situation.

Some children with autism are only able to parrot what they hear, a condition called echolalia. Without persistent training, echoing other people's phrases may be the only language that people with autism ever acquire. What they repeat might be a question they were just asked, or an advertisement on television. Or out of the blue, a child may shout, "Stay on your own side of the road!"-something he heard his father say weeks before. Although children without autism go through a stage where they repeat what they hear, it normally passes by the time they are 3.

People with autism also tend to confuse pronouns. They fail to grasp that words like "my," "I," and "you," change meaning depending on who is speaking. When Alan's teacher asks, "What is my name?" he answers, "My name is Alan."

Some children say the same phrase in a variety of different situations. One child, for example, says "Get in the car," at random times throughout the day. While on the surface, her statement seems bizarre, there may be a meaningful pattern in what the child says. The child may be saying, "Get in the car," whenever she wants to go outdoors. In her own mind, she's associated "Get in the car," with leaving the house. Another child, who says "Milk and cookies" whenever he is pleased, may be associating his good feelings around this treat with other things that give him pleasure.

It can be equally difficult to understand the body language of a person with autism. Most of us smile when we talk about things we enjoy, or shrug when we can't answer a question. But for children with autism, facial expressions, movements, and gestures rarely match what they are saying. Their tone of voice also fails to reflect their feelings. A high-pitched, sing-song, or flat, robot-like voice is common.

Without meaningful gestures or the language to ask for things, people with autism are at a loss to let others know what they need. As a result, children with autism may simply scream or grab what they want. Temple Grandin, an exceptional woman with autism who has written two books about her disorder, admits, "Not being able to speak was utter frustration. Screaming was the only way I could communicate." Often she would logically think to herself, "I am going to scream now because I want to tell somebody I don't want to do something." Until they are taught better means of expressing their needs, people with autism do whatever they can to get through to others.

Temple Grandin, despite a lifelong struggle with autism, earned a doctoral degree in animal science. Today, she invents equipment for managing livestock and teaches at a major university. A woman of extraordinary accomplishments, she has also written several books on animal science, autism, and her own life.

Yet at 6 months old, Temple had many of the full-blown signs of autism. When held, she would stiffen and struggle to be put down. By age 2, it was clear that she was hypersensitive to taste, sound, smell, and touch. Sounds were excruciating. Wearing clothes was torture: the feel of certain fabrics was like sandpaper grating her skin. Constantly buffeted by overpowering sensations, she screamed, raged, and threw things. At other times, she found that by focusing intently and exclusively on one item-her own hand, an apple, a spinning coin, or sand sifting through her fingers-she could withdraw into a temporary haven of order and predictability.

As was customary at the time, a doctor advised that Temple be institutionalized. Her mother refused and placed her in a therapeutic program for children who were speech impaired. The classes were small and highly structured. Even though the program was not designed to treat autism, the methods worked for Temple. By age 4, she began to speak and by age 5 she was able to attend kindergarten in a regular school. Temple attributes her success to several key people in her life: her mother, who persisted in finding help; her therapist, who kept her from withdrawing into an inner world; and a high school teacher who helped transform her interest in animals into a career in animal science.

Temple's insights into the needs of animals, a strongly developed ability to think visually "in pictures," and an awareness of her own special needs led her to invent equipment that has helped both livestock and, remarkably, herself. After seeing a device used to calm cattle, she created a "squeeze machine." The machine provides self- controlled pressure that helps her relax. She finds that after using the squeeze machine, she feels less aggressive and less hypersensitive. With her love of animals and her personal sensitivity as a guide, Temple has also designed humane equipment and facilities for managing cattle that are used all over the world. Her unusually strong visual sense allows her to plan and design these complex projects in her head. She can precisely envision new, complex facilities and how various pieces of equipment fit together before she draws a blueprint.

Temple Grandin's story is a powerful affirmation that autism need not keep people from realizing their potential.

Some people with autism also tend to repeat certain actions over and over. A child might spend hours lining up pretzel sticks. Or, like Alan, run from room to room turning lights on and off.

Some children with autism develop troublesome fixations with specific objects, which can lead to unhealthy or dangerous behaviors. For example, one child insists on carrying feces from the bathroom into her classroom. Other behaviors are simply startling, humorous, or embarrassing to those around them. One girl, obsessed with digital watches, grabs the arms of strangers to look at their wrists.

For unexplained reasons, people with autism demand consistency in their environment. Many insist on eating the same foods, at the same time, sitting at precisely the same place at the table every day. They may get furious if a picture is tilted on the wall, or wildly upset if their toothbrush has been moved even slightly. A minor change in their routine, like taking a different route to school, may be tremendously upsetting.

Scientists are exploring several possible explanations for such repetitive, obsessive behavior. Perhaps the order and sameness lends some stability in a world of sensory confusion. Perhaps focused behaviors help them to block out painful stimuli. Yet another theory is that these behaviors are linked to the senses that work well or poorly. A child who sniffs everything in sight may be using a stable sense of smell to explore his environment. Or perhaps the reverse is true: he may be trying to stimulate a sense that is dim.

Imaginative play, too, is limited by these repetitive behaviors and obsessions. Most children, as early as age 2, use their imagination to pretend. They create new uses for an object, perhaps using a bowl for a hat. Or they pretend to be someone else, like a mother cooking dinner for her "family" of dolls. In contrast, children with autism rarely pretend. Rather than rocking a doll or rolling a toy car, they may simply hold it, smell it, or spin it for hours on end.

Apparently, as a result of a brain malfunction, many children with autism are highly attuned or even painfully sensitive to certain sounds, textures, tastes, and smells. Some children find the feel of clothes touching their skin so disturbing that they can't focus on anything else. For others, a gentle hug may be overwhelming. Some children cover their ears and scream at the sound of a vacuum cleaner, a distant airplane, a telephone ring, or even the wind. Temple Grandin says, "It was like having a hearing aid that picks up everything, with the volume control stuck on super loud." Because any noise was so painful, she often chose to withdraw and tuned out sounds to the point of seeming deaf.

In autism, the brain also seems unable to balance the senses appropriately. Some children with autism seem oblivious to extreme cold or pain, but react hysterically to things that wouldn't bother other children. A child with autism may break her arm in a fall and never cry. Another child might bash his head on the wall without a wince. On the other hand, a light touch may make the child scream with alarm.

In some people, the senses are even scrambled. One child gags when she feels a certain texture. A man with autism hears a sound when someone touches a point on his chin. Another experiences certain sounds as colors.

Top

Parents are usually the first to notice unusual behaviors in their child. In many cases, their baby seemed "different" from birth-being unresponsive to people and toys, or focusing intently on one item for long periods of time. The first signs of autism may also appear in children who had been developing normally. When an affectionate, babbling toddler suddenly becomes silent, withdrawn, violent, or self-abusive, something is wrong.

Even so, years may go by before the family seeks a diagnosis. Well-meaning friends and relatives sometimes help parents ignore the problems with reassurances that "Every child is different," or "Janie can talk-she just doesn't want to!" Unfortunately, this only delays getting appropriate assessment and treatment for the child.

To date, there are no medical tests like x-rays or blood tests that detect autism. And no two children with the disorder behave the same way. In addition, several conditions can cause symptoms that resemble those of autism. So parents and the child's pediatrician need to rule out other disorders, including hearing loss, speech problems, mental retardation, and neurological problems. But once these possibilities have been eliminated, a visit to a professional who specializes in autism is necessary. Such specialists include people with the professional titles of child psychiatrist, child psychologist, developmental pediatrician, or pediatric neurologist.

Autism specialists use a variety of methods to identify the disorder. Using a standardized rating scale, the specialist closely observes and evaluates the child's language and social behavior. A structured interview is also used to elicit information from parents about the child's behavior and early development. Reviewing family videotapes, photos, and baby albums may help parents recall when each behavior first occurred and when the child reached certain developmental milestones. The specialists may also test for certain genetic and neurological problems.

Specialists may also consider other conditions that produce many of the same behaviors and symptoms as autism, such as Rett's Disorder or Asperger's Disorder. Rett's Disorder is a progressive brain disease that only affects girls but, like autism, produces repetitive hand movements and leads to loss of language and social skills. Children with Asperger's Disorder are very like high-functioning children with autism. Although they have repetitive behaviors, severe social problems, and clumsy movements, their language and intelligence are usually intact. Unlike autism, the symptoms of Asperger's Disorder typically appear later in childhood.

After assessing observations and test results, the specialist makes a diagnosis of autism only if there is clear evidence of:

People with autism generally have some impairment within each category, although the severity of each symptom may vary. The diagnostic criteria also require that these symptoms appear by age 3.

However, some specialists are reluctant to give a diagnosis of autism. They fear that it will cause parents to lose hope. As a result, they may apply a more general term that simply describes the child's behaviors or sensory deficits. "Severe communication disorder with autism-like behaviors," "multi-sensory system disorder," and "sensory integration dysfunction" are some of the terms that are used. Children with milder or fewer symptoms are often diagnosed as having Pervasive Developmental Disorder (PDD).

Although terms like Asperger's Disorder and PDD do not significantly change treatment options, they may keep the child from receiving the full range of specialized educational services available to children diagnosed with autism. They may also give parents false hope that their child's problems are only temporary.

Top

It is generally accepted that autism is caused by abnormalities in brain structures or functions. Using a variety of new research tools to study human and animal brain growth, scientists are discovering more about normal development and how abnormalities occur.

The brain of a fetus develops throughout pregnancy. Starting out with a few cells, the cells grow and divide until the brain contains billions of specialized cells, called neurons. Research sponsored by NIMH and other components at the National Institutes of Health is playing a key role in showing how cells find their way to a specific area of the brain and take on special functions. Once in place, each neuron sends out long fibers that connect with other neurons. In this way, lines of communication are established between various areas of the brain and between the brain and the rest of the body. As each neuron receives a signal it releases chemicals called neurotransmitters, which pass the signal to the next neuron. By birth, the brain has evolved into a complex organ with several distinct regions and subregions, each with a precise set of functions and responsibilities.

But brain development does not stop at birth. The brain continues to change during the first few years of life, as new neurotransmitters become activated and additional lines of communication are established. Neural networks are forming and creating a foundation for processing language, emotions, and thought.

However, scientists now know that a number of problems may interfere with normal brain development. Cells may migrate to the wrong place in the brain. Or, due to problems with the neural pathways or the neurotransmitters, some parts of the communication network may fail to perform. A problem with the communication network may interfere with the overall task of coordinating sensory information, thoughts, feelings, and actions.

Researchers supported by NIMH and other NIH Institutes are scrutinizing the structures and functions of the brain for clues as to how a brain with autism differs from the normal brain. In one line of study, researchers are investigating potential defects that occur during initial brain development. Other researchers are looking for defects in the brains of people already known to have autism.

Scientists are also looking for abnormalities in the brain structures that make up the limbic system. Inside the limbic system, an area called the amygdala is known to help regulate aspects of social and emotional behavior. One study of high-functioning children with autism found that the amygdala was indeed impaired but that another area of the brain, the hippocampus, was not. In another study, scientists followed the development of monkeys whose amygdala was disrupted at birth. Like children with autism, as the monkeys grew, they became increasingly withdrawn and avoided social contact.

Differences in neurotransmitters, the chemical messengers of the nervous system, are also being explored. For example, high levels of the neurotransmitter serotonin have been found in a number of people with autism. Since neurotransmitters are responsible for passing nerve impulses in the brain and nervous systme, it is possible that they are involved in the distortion of sensations that accompanies autism.

NIMH grantees are also exploring differences in overall brain function, using a technology called magnetic resonance imaging (MRI) to identify which parts of the brain are energized during specific mental tasks. In a study of adolescent boys, NIMH researchers observed that during problem-solving and language tasks, teenagers with autism were not only less successful than peers without autism, but the MRI images of their brains showed less activity. In a study of younger children, researcers observed low levels of activity in the parietal areas and the corpus callosum. Such research may help scientists determine whether autism reflects a problem with specific areas of the brain or with the transmission of signals from one part of the brain to another.

Each of these differences has been seen in some but not all the people with autism who were tested. What could this mean? Perhaps the term autism actually covers several different disorders, each caused by a different problem in the brain. Or perhaps the various brain differences are themselves caused by a single underlying disorder that scientists have not yet identified. Discovering the physical basis of autism should someday allow us to better identify, treat, and possibly prevent it.

But what causes normal brain development to go awry? Some NIMH researchers are investigating genetic causes-the role that heredity and genes play in passing the disorder from one generation to the next. Others are looking at medical problems related to pregnancy and other factors.

Heredity. Several studies of twins suggest that autism- or at least a higher likelihood of some brain dysfunction-can be inherited. For example, identical twins are far more likely than fraternal twins to both have autism. Unlike fraternal twins, which develop from two separate eggs, identical twins develop from a single egg and have the same genetic makeup.

It appears that parents who have one child with autism are at slightly increased risk for having more than one child with autism. This also suggests a genetic link. However, autism does not appear to be due to one particular gene. If autism, like eye color, were passed along by a single gene, more family members would inherit the disorder. NIMH grantees, using state-of-the-art gene splicing techniques, are searching for irregular segments of genetic code that the autistic members of a family may have inherited.

Some scientists believe that what is inherited is an irregular segment of genetic code or a small cluster of three to six unstable genes. In most people, the faulty code may cause only minor problems. But under certain conditions, the unstable genes may interact and seriously interfere with the brain development of the unborn child.

A body of NIMH-sponsored research is testing this theory. One study is exploring whether parents and siblings who do not have autism show minor symptoms, such as mild social, language, or reading problems. If so, such findings would suggest that several members of a family can inherit the irregular or unstable genes, but that other as yet unidentified conditions must be present for the full-blown disorder to develop.

Pregnancy and other problems. Throughout pregnancy, the fetal brain is growing larger and more complex, as new cells, specialized regions, and communication networks form. During this time, anything that disrupts normal brain development may have lifelong effects on the child's sensory, language, social, and mental functioning.

For this reason, researchers are exploring whether certain conditions, like the mother's health during pregnancy, problems during delivery, or other environmental factors may interfere with normal brain development. Viral infections like rubella (also called German measles), particularly in the first three months of pregnancy, may lead to a variety of problems, possibly including autism and retardation. Lack of oxygen to the baby and other complications of delivery may also increase the risk of autism. However, there is no clear link. Such problems occur in the delivery of many infants who are not autistic, and most children with autism are born without such factors.

Top

Several disorders commonly accompany autism. To some extent, these may be caused by a common underlying problem in brain functioning.

Of the problems that can occur with autism, mental retardation is the most widespread. Seventy-five to 80 percent of people with autism are mentally retarded to some extent. Fifteen to 20 percent are considered severely retarded, with IQs below 35. (A score of 100 represents average intelligence.) But autism does not necessarily correspond with mental impairment. More than 10 percent of people with autism have an average or above average IQ. A few show exceptional intelligence.

Interpreting IQ scores is difficult, however, because most intelligence tests are not designed for people with autism. People with autism do not perceive or relate to their environment in typical ways. When tested, some areas of ability are normal or even above average, and some areas may be especially weak. For example, a child with autism may do extremely well on the parts of the test that measure visual skills but earn low scores on the language subtests.

About one-third of the children with autism develop seizures, starting either in early childhood or adolescence. Researchers are trying to learn if there is any significance to the time of onset, since the seizures often first appear when certain neurotransmitters become active.

Since seizures range from brief blackouts to full-blown body convulsions, an electroencephalogram (EEG) can help confirm their presence. Fortunately, in most cases, seizures can be controlled with medication.

One disorder, Fragile X syndrome, has been found in about 10 percent of people with autism, mostly males. This inherited disorder is named for a defective piece of the X-chromosome that appears pinched and fragile when seen under a microscope.

People who inherit this faulty bit of genetic code are more likely to have mental retardation and many of the same symptoms as autism along with unusual physical features that are not typical of autism.

There is also some relationship between autism and Tuberous Sclerosis, a genetic condition that causes abnormal tissue growth in the brain and problems in other organs. Although Tuberous Sclerosis is a rare disorder, occurring less than once in 10,000 births, about a fourth of those affected are also autistic.

Scientists are exploring genetic conditions such as Fragile X and Tuberous Sclerosis to see why they so often coincide with autism. Understanding exactly how these conditions disrupt normal brain development may provide insights to the biological and genetic mechanisms of autism.

Adolescence was a good time for Paul. He seemed to relax and become more social. He became more affectionate. When approached, he would converse with people. For several months, drugs were used to help him control his aggression, but they were stopped because they caused unwanted side effects. Even so, he now rarely throws or breaks things.

Two years ago, Paul's parents were able to take advantage of new scientific understanding about autism, and they enrolled him in an innovative program that provides full-time support, enabling him to live and work within the community. Today, at age 20, he has a closely supervised job assembling booklets for a publishing company. He lives in an attractive apartment with another man who has autism and a residence supervisor. Paul loves picnics and outings to the library to check out books and cassettes. He also enjoys going home each week to visit his family. But he still demands familiarity and order. As soon as he arrives home, he moves every piece of furniture back to the location that is familiar to him.

The summer Alan was 6, after years with no apparent progress, his language began to flow. Although he reversed the meaning of pronouns, he began talking in sentences that other people could understand.

Now age 13, Alan has lost his constant obsession with lights, returning to it only when he feels stressed. He often burrows under a heavy pile of pillows, which seems to relax and comfort him. His fits of anger occur less often, but because he is bigger, he reacts with more force. Every now and then, he goes out of control, kicking, hitting, and biting. Once, at a shopping mall, he threw a tantrum so severe that his mother had to hold him down to control him.

At the same time, he has successfully made the transition to middle school and he is learning more quickly than before. He seems more aware of his surroundings and remembers people. He still doesn't play with other children, but often sits watching them from a window. It's as if he has become aware that he is different. He also seems more aware of his own emotions and at times he says quietly, "You sad."

Today, at age 4, Janie is enrolled in an intensive program in which she is trained at home by her mother and several specialists. She is beginning to show real progress. She now makes eye contact and has begun to talk. She can ask for things. As a result, she seems happier, less frustrated, and better able to form connections with others. She's also begun to show some remarkable skills. She can stack blocks and match objects far beyond her years. And her memory is amazing. Although her speech is often unclear, she can recite and act out entire television programs. Her parents' dream is that she will progress enough to enter a regular kindergarten next year.

Top

When parents learn that their child is autistic, most wish they could magically make the problem go away. They looked forward to having a baby and watching their child learn and grow. Instead, they must face the fact that they have a child who may not live up to their dreams and will daily challenge their patience. Some families deny the problem or fantasize about an instant cure. They may take the child from one specialist to another, hoping for a different diagnosis. It is important for the family to eventually overcome their pain and deal with the problem, while still cherishing hopes for their child's future. Most families realize that their lives can move on.

Today, more than ever before, people with autism can be helped. A combination of early intervention, special education, family support, and in some cases, medication, is helping increasing numbers of children with autism to live more normal lives. Special interventions and education programs can expand their capacity to learn, communicate, and relate to others, while reducing the severity and frequency of disruptive behaviors. Medications can be used to help alleviate certain symptoms. Older children and adults like Paul may also benefit from the treatments that are available today. So, while no cure is in sight, it is possible to greatly improve the day-to-day life of children and adults with autism.

Today, a child who receives effective therapy and education has every hope of using his or her unique capacity to learn. Even some who are seriously mentally retarded can often master many self-help skills like cooking, dressing, doing laundry, and handling money. For such children, greater independence and self-care may be the primary training goals. Other youngsters may go on to learn basic academic skills, like reading, writing, and simple math. Many complete high school. Some, like Temple Grandin, may even earn college degrees. Like anyone else, their personal interests provide strong incentives to learn. Clearly, an important factor in developing a child's long-term potential for independence and success is early intervention. The sooner a child begins to receive help, the more opportunity for learning. Furthermore, because a young child's brain is still forming, scientists believe that early intervention gives children the best chance of developing their full potential. Even so, no matter when the child is diagnosed, it's never too late to begin treatment.

A number of treatment approaches have evolved in the decades since autism was first identified. Some therapeutic programs focus on developing skills and replacing dysfunctional behaviors with more appropriate ones. Others focus on creating a stimulating learning environment tailored to the unique needs of children with autism.

Researchers have begun to identify factors that make certain treatment programs more effective in reducing- or reversing-the limitations imposed by autism. Treatment programs that build on the child's interests, offer a predictable schedule, teach tasks as a series of simple steps, actively engage the child's attention in highly structured activities, and provide regular reinforcement of behavior, seem to produce the greatest gains.

Parent involvement has also emerged as a major factor in treatment success. Parents work with teachers and therapists to identify the behaviors to be changed and the skills to be taught. Recognizing that parents are the child's earliest teachers, more programs are beginning to train parents to continue the therapy at home. Research is beginning to suggest that mothers and fathers who are trained to work with their child can be as effective as professional teachers and therapists.

Professionals have found that many children with autism learn best in an environment that builds on their skills and interests while accommodating their special needs. Programs employing a developmental approach provide consistency and structure along with appropriate levels of stimulation. For example, a predictable schedule of activities each day helps children with autism plan and organize their experiences. Using a certain area of the classroom for each activity helps students know what they are expected to do. For those with sensory problems, activities that sensitize or desensitize the child to certain kinds of stimulation may be especially helpful.

In one developmental preschool classroom, a typical session starts with a physical activity to help develop balance, coordination, and body awareness. Children string beads, piece puzzles together, paint and participate in other structured activities. At snack time, the teacher encourages social interaction and models how to use language to ask for more juice. Later, the teacher stimulates creative play by prompting the children to pretend being a train. As in any classroom, the children learn by doing.

Although higher-functioning children may be able to handle academic work, they too need help to organize the task and avoid distractions. A student with autism might be assigned the same addition problems as her classmates. But instead of assigning several pages in the textbook, the teacher might give her one page at a time or make a list of specific tasks to be checked off as each is done.

When people are rewarded for a certain behavior, they are more likely to repeat or continue that behavior. Behaviorist training approaches are based on this principle. When children with autism are rewarded each time they attempt or perform a new skill, they are likely to perform it more often. With enough practice, they eventually acquire the skill. For example, a child who is rewarded whenever she looks at the therapist may gradually learn to make eye contact on her own.

Dr. O. Ivar Lovaas pioneered the use of behaviorist methods for children with autism more than 25 years ago. His methods involve time-intensive, highly structured, repetitive sequences in which a child is given a command and rewarded each time he responds correctly. For example, in teaching a young boy to sit still, a therapist might place him in front of chair and tell him to sit. If the child doesn't respond, the therapist nudges him into the chair. Once seated, the child is immediately rewarded in some way. A reward might be a bit of chocolate, a sip of juice, a hug, or applause-whatever the child enjoys. The process is repeated many times over a period of up to two hours. Eventually, the child begins to respond without being nudged and sits for longer periods of time. Learning to sit still and follow directions then provides a foundation for learning more complex behaviors. Using this approach for up to 40 hours a week, some children may be brought to the point of near-normal behavior. Others are much less responsive to the treatment.

However, some researchers and therapists believe that less intensive treatments, particularly those begun early in a child's life, may be more efficient and just as effective. So, over the years, researchers sponsored by NIMH and other agencies have continued to study and modify the behaviorist approach. Today, some of these behaviorist treatment programs are more individualized and built around the child's own interests and capabilities. Many programs also involve parents or other non-autistic children in teaching the child. Instruction is no longer limited to a controlled environment, but takes place in natural, everyday settings. Thus, a trip to the supermarket may be an opportunity to practice using words for size and shape. Although rewarding desired behavior is still a key element, the rewards are varied and appropriate to the situation. A child who makes eye contact may be rewarded with a smile, rather than candy. NIMH is funding several types of behaviorist treatment approaches to help determine the best time for treatment to start, the optimum treatment intensity and duration, and the most effective methods to reach both high- and low-functioning children.

In trying to do everything possible to help their children, many parents are quick to try new treatments. Some treatments are developed by reputable therapists or by parents of a child with autism, yet when tested scientifically, cannot be proven to help. Before spending time and money and possibly slowing their child's progress, the family should talk with experts and evaluate the findings of objective reviewers. Following are some of the approaches that have not been shown to be effective in treating the majority of children with autism:

Parents are often disappointed to learn that there is no single best treatment for all children with autism; possibly not even for a specific child.

Even after a child has been thoroughly tested and formally diagnosed, there is no clear "right" course of action. The diagnostic team may suggest treatment methods and service providers, but ultimately it is up to the parents to consider their child's unique needs, research the various options, and decide.

Above all, parents should consider their own sense of what will work for their child. Keeping in mind that autism takes many forms, parents need to consider whether a specific program has helped children like their own.

At the back of this pamphlet is a list of books and associations that provide more detailed information about each form of therapy and other resources.

Parents may find these questions helpful as they consider various treatment programs:

See the original post:
Autism - Psych Central

This entry was posted in Uncategorized. Bookmark the permalink.

Comments are closed.