Can genetic engineering help food crops better tolerate drought?

Posted: Published on September 26th, 2014

This post was added by Dr P. Richardson

PUBLIC RELEASE DATE:

25-Sep-2014

Contact: Kathryn Ryan kryan@liebertpub.com 914-740-2100 Mary Ann Liebert, Inc./Genetic Engineering News @LiebertOnline

New Rochelle, NY, September 25, 2014The staggering growth rate of the global population demands innovative and sustainable solutions to increase food production by as much as 70-100% in the next few decades. In light of environmental changes, more drought-tolerant food crops are essential. The latest technological advances and future directions in regulating genes involved in stress tolerance in crops is presented in a Review article in OMICS: A Journal of Integrative Biology, the peer-reviewed interdisciplinary journal published by Mary Ann Liebert, Inc., publishers. The article is available free on the OMICS website.

Coauthors Roel Rabara and Paul Rushton, Texas A&M AgriLife Research and Extension Center, Dallas, TX, and Prateek Tripathi, University of Southern California, Los Angeles, focus on the role of transcription factors, described as "master regulators" because they are important components of many genetic regulatory pathways and may be able to control clusters of genes. Drought tolerance is a complex trait that is regulated by multiple genes.

In the article "The Potential of Transcription Factor-Based Genetic Engineering in Improving Crop Tolerance to Drought," the authors describe current strategies for using transcription factors to improve drought tolerance and discuss how novel, advanced technologies will help study promising, genetically engineered food crops under field growing conditions.

"With limited water supply continuing to constrain food crop production, understanding and improving crop tolerance to drought is a grand challenge for 21st century biology and medicine, and to feed a massive world population," says OMICS Editor-in-Chief Vural zdemir, MD, PhD, DABCP, Gaziantep University, Faculty of Communications and Office of the President, Gaziantep, Turkey, and Co-Founder, the Data-Enabled Life Sciences Alliance International (DELSA Global), Seattle, WA. "Transcription factors are veritable candidates for innovation in the next generation of transgenic crops because of their natural role in plant growth and development. Field studies (not only greenhouse measures) will provide additional insights to measure their actual impact and innovation. This state of the art review article offers a timely analysis and topline summary distilled from the past several decades of leading literature."

###

About the Journal

OMICS: A Journal of Integrative Biology is an authoritative peer-reviewed journal published monthly online, which covers genomics, transcriptomics, proteomics, metabolomics, and multi-omics innovations. The Journal explores advances in the era of post-genomic biology and medicine and focuses on the integration of OMICS, data analyses and modeling, and applications of high-throughput approaches to study biological problems. Social, ethical, and public policy aspects of the large-scale biology and 21st century data-enabled sciences are also considered. Complete tables of content and a sample issue may be viewed on the OMICS website.

See the rest here:
Can genetic engineering help food crops better tolerate drought?

Related Posts
This entry was posted in Genetic Engineering. Bookmark the permalink.

Comments are closed.