Causal associations of circulating adiponectin with cardiometabolic diseases and osteoporotic fracture | Scientific Reports – Nature.com

Posted: Published on April 24th, 2022

This post was added by Alex Diaz-Granados

Scheja, L. & Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 15(9), 507524 (2019).

CAS PubMed Article Google Scholar

Goossens, G. H. The metabolic phenotype in obesity: fat mass. Body Fat Distrib Adipose Tissue Funct. Obesity Facts 10(3), 207215 (2017).

CAS Google Scholar

Mechanick, J. I., Farkouh, M. E., Newman, J. D. & Garvey, W. T. Cardiometabolic-based chronic disease, adiposity and dysglycemia drivers: JACC state-of-the-art review. J. Am. Coll. Cardiol. 75(5), 525538 (2020).

CAS PubMed PubMed Central Article Google Scholar

Scott, D., Johansson, J., Ebeling, P. R., Nordstrom, P. & Nordstrom, A. Adiposity without obesity: associations with osteoporosis, sarcopenia, and falls in the healthy ageing initiative cohort study. Obesity 28(11), 22322241 (2020).

PubMed Article Google Scholar

Coltell, O., Ortega-Azorn, C., Sorl, J. V., Portols, O., Asensio, E. M., Saiz, C., Barragn, R., Estruch, R., Corella, D. Circulating adiponectin and its association with metabolic traits and type 2 diabetes: gene-diet interactions focusing on selected gene variants and at the genome-wide level in high-cardiovascular risk mediterranean subjects. Nutrients 13(2) (2021).

Trujillo, M. E. & Scherer, P. E. Adiponectinjourney from an adipocyte secretory protein to biomarker of the metabolic syndrome. J. Intern. Med. 257(2), 167175 (2005).

CAS PubMed Article Google Scholar

Matsuzawa, Y., Funahashi, T., Kihara, S. & Shimomura, I. Adiponectin and metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 24(1), 2933 (2004).

CAS PubMed Article Google Scholar

Matsuzawa, Y. The metabolic syndrome and adipocytokines. FEBS Lett. 580(12), 29172921 (2006).

CAS PubMed Article Google Scholar

Diah, M., Lelo, A., Lindarto, D. & Mukhtar, Z. Plasma concentrations of adiponectin in patients with coronary artery disease and coronary slow flow. Acta Med. Indones. 51(4), 290295 (2019).

PubMed Google Scholar

Stojanovi, S., Ili, M. D., Ili, S., Petrovi, D. & Djuki, S. The significance of adiponectin as a biomarker in metabolic syndrome and/or coronary artery disease. Vojnosanit. Pregl. 72(9), 779784 (2015).

PubMed Article Google Scholar

Bai, W., Huang, J., Zhu, M., Liu, X. & Tao, J. Association between elevated adiponectin level and adverse outcomes in patients with heart failure: a systematic review and meta-analysis. Braz J Med Biol Res 52(7), e8416 (2019).

PubMed PubMed Central Article CAS Google Scholar

Al-Osami, M. H. & Hameed, E. K. Serum adiponectin level in osteoporotic postmenopausal women with type 2 diabetes mellitus. Diabetes Metab Syndrome 12(6), 939942 (2018).

Article Google Scholar

Tanna, N. et al. The relationship between circulating adiponectin, leptin and vaspin with bone mineral density (BMD), arterial calcification and stiffness: a cross-sectional study in post-menopausal women. J. Endocrinol. Invest. 40(12), 13451353 (2017).

CAS PubMed Article Google Scholar

Nakamura, Y. et al. Two adipocytokines, leptin and adiponectin, independently predict osteoporotic fracture risk at different bone sites in postmenopausal women. Bone 137, 115404 (2020).

CAS PubMed Article Google Scholar

Davies, N. M., Holmes, M. V. & Smith, G. D. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362, k601 (2018).

PubMed PubMed Central Article Google Scholar

Burgess, S., Dudbridge, F. & Thompson, S. G. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat. Med. 35(11), 18801906 (2016).

MathSciNet PubMed Article Google Scholar

He, B. et al. Depression and osteoporosis: a mendelian randomization study. Calcif. Tissue Int. https://doi.org/10.1007/s00223-021-00886-5 (2021).

Article PubMed PubMed Central Google Scholar

Burgess, S., Scott, R. A., Timpson, N. J., Smith, G. D. & Thompson, S. G. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol 30(7), 54352 (2015).

PubMed PubMed Central Article Google Scholar

He, B., Yin, L., Zhang, M., Lyu, Q., Quan, Z., Ou, Y. Causal effect of blood pressure on bone mineral density and fracture: a mendelian randomization study. Front. Endocrinol. 12(910) (2021).

Zhao, J., Zhang, M., Quan, Z., Deng, L., Li, Y., He, B. Systematic influence of circulating bilirubin levels on osteoporosis. Front. Endocrinol. 12(1022) (2021).

Warrington, N. M. et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat. Genet. 51(5), 804814 (2019).

CAS PubMed PubMed Central Article Google Scholar

Iotchkova, V. et al. Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps. Nat. Genet. 48(11), 13031312 (2016).

CAS PubMed PubMed Central Article Google Scholar

Trajanoska, K. & Rivadeneira, F. The genetic architecture of osteoporosis and fracture risk. Bone 126, 210 (2019).

PubMed Article Google Scholar

Yang, T. L. et al. A road map for understanding molecular and genetic determinants of osteoporosis. Nat. Rev. Endocrinol. 16(2), 91103 (2020).

PubMed Article Google Scholar

Choi, H. M., Doss, H. M., Kim, K. S. Multifaceted physiological roles of adiponectin in inflammation and diseases. Int. J. Mol. Sci. 21(4) (2020).

Yu, B. et al. Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-B. Nat. Med. 20(9), 10091017 (2014).

CAS PubMed PubMed Central Article Google Scholar

Ali, M., Girgis, S., Hassan, A., Rudick, S. & Becker, R. C. Inflammation and coronary artery disease: from pathophysiology to Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Coron. Artery Dis. 29(5), 429437 (2018).

PubMed Article Google Scholar

Adamo, L., Rocha-Resende, C., Prabhu, S. D. & Mann, D. L. Reappraising the role of inflammation in heart failure. Nat. Rev. Cardiol. 17(5), 269285 (2020).

PubMed Article Google Scholar

Hu, Y. F., Chen, Y. J., Lin, Y. J. & Chen, S. A. Inflammation and the pathogenesis of atrial fibrillation. Nat. Rev. Cardiol. 12(4), 230243 (2015).

CAS PubMed Article Google Scholar

Gao, G. et al. Glutaminase 1 regulates neuroinflammation after cerebral ischemia through enhancing microglial activation and pro-inflammatory exosome release. Front. Immunol. 11, 161 (2020).

CAS PubMed PubMed Central Article Google Scholar

He, B., Xia, L., Zhao, J., Yin, L., Zhang, M., Quan, Z., Ou, Y., Huang, W. Causal effect of serum magnesium on osteoporosis and cardiometabolic diseases. Front. Nutr. 8(955) (2021).

B. He, J. Zhao, M. Zhang, L. Yin, Z. Quan, Y. Ou, W. Huang, Casual roles of circulating adiponectin in osteoporosis and cancers. Bone (2021) 116266.

Spracklen, C. N. et al. Exome-derived adiponectin-associated variants implicate obesity and lipid biology. Am. J. Hum. Genet. 105(1), 1528 (2019).

CAS PubMed PubMed Central Article Google Scholar

Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics 50(11), 15051513 (2018).

CAS PubMed PubMed Central Article Google Scholar

van der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res. 122(3), 433443 (2018).

PubMed PubMed Central Article CAS Google Scholar

Shah, S. et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat. Commun. 11(1), 163 (2020).

ADS CAS PubMed PubMed Central Article Google Scholar

Roselli, C. et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat. Genet. 50(9), 12251233 (2018).

CAS PubMed PubMed Central Article Google Scholar

Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50(9), 13351341 (2018).

CAS PubMed PubMed Central Article Google Scholar

Morris, J. A. et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat. Genet. 51(2), 258266 (2019).

CAS PubMed Article Google Scholar

Greco, M. F., Minelli, C., Sheehan, N. A. & Thompson, J. R. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat. Med. 34(21), 29262940 (2015).

MathSciNet Article Google Scholar

Burgess, S. & Thompson, S. G. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 181(4), 251260 (2015).

PubMed PubMed Central Article Google Scholar

Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46(6), 17341739 (2017).

PubMed PubMed Central Article Google Scholar

Hemani, G., Zheng, J., Elsworth, B., Wade, K. H., Haberland, V., Baird, D., Laurin, C., Burgess, S., Bowden, J., Langdon, R., Tan, V. Y., Yarmolinsky, J., Shihab, H. A., Timpson, N. J., Evans, D. M., Relton, C., Martin, R. M., Smith, G. D., Gaunt, T. R., Haycock, P. C. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7 (2018).

Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50(5), 693698 (2018).

CAS PubMed PubMed Central Article Google Scholar

Nguyen, T. M. D. Adiponectin: role in physiology and pathophysiology. Int. J. Prev. Med. 11, 136 (2020).

PubMed PubMed Central Article Google Scholar

Francischetti, E. A. et al. Insights into the controversial aspects of adiponectin in cardiometabolic disorders. Hormone Metab. Res. 52(10), 695707 (2020).

CAS Article Google Scholar

A.E. Achari, S.K. Jain, Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci. 18(6) (2017).

Stefan, N. et al. Plasma adiponectin concentrations in children: relationships with obesity and insulinemia. J. Clin. Endocrinol. Metab. 87(10), 46524656 (2002).

CAS PubMed Article Google Scholar

Hotta, K. et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20(6), 15951599 (2000).

CAS PubMed Article Google Scholar

Zhu, W., Cheng, K. K., Vanhoutte, P. M., Lam, K. S. & Xu, A. Vascular effects of adiponectin: molecular mechanisms and potential therapeutic intervention. Clin. Sci. 114(5), 36174 (2008).

CAS Article Google Scholar

Kanaya, A. M. et al. Adipocytokines and incident diabetes mellitus in older adults: the independent effect of plasminogen activator inhibitor 1. Arch. Internal Med. 166(3), 350356 (2006).

CAS Article Google Scholar

Chen, Z. et al. Effects of adiponectin on T2DM and glucose homeostasis: a mendelian randomization study. Diabetes Metab. Syndrome Obesity: Targets Therapy 13, 17711784 (2020).

CAS Article Google Scholar

Li, J. et al. Rosiglitazone elicits an adiponectin-mediated insulin-sensitizing action at the adipose tissue-liver axis in otsuka long-evans tokushima fatty rats. J. Diabetes Res. 2018, 4627842 (2018).

PubMed PubMed Central Google Scholar

Ohashi, K. et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J. Biol. Chem. 285(9), 61536160 (2010).

CAS PubMed Article Google Scholar

Excerpt from:
Causal associations of circulating adiponectin with cardiometabolic diseases and osteoporotic fracture | Scientific Reports - Nature.com

Related Posts
This entry was posted in Coronary Heart Diseases. Bookmark the permalink.

Comments are closed.