Challenging Parkinson's dogma

Posted: Published on October 29th, 2012

This post was added by Dr Simmons

Public release date: 24-Oct-2012 [ | E-mail | Share ]

Contact: David Cameron david_cameron@hms.harvard.edu 617-432-0441 Harvard Medical School

Scientists may have discovered why the standard treatment for Parkinson's disease is often effective for only a limited period of time. Their research could lead to a better understanding of many brain disorders, from drug addiction to depression, that share certain signaling molecules involved in modulating brain activity.

A team led by Bernardo Sabatini, Takeda Professor of Neurobiology at Harvard Medical School, used mouse models to study dopamine neurons in the striatum, a region of the brain involved in both movement and learning. In people, these neurons release dopamine, a neurotransmitter that allows us to walk, speak and even type on a keyboard. When those cells die, as they do in Parkinson's patients, so does the ability to easily initiate movement. Current Parkinson's drugs are precursors of dopamine that are then converted into dopamine by cells in the brain.

The flip side of dopamine dearth is dopamine hyperactivity. Heroin, cocaine and amphetamines rev up or mimic dopamine neurons, ultimately reinforcing the learned reward of drug-taking. Other conditions such as obsessive-compulsive disorder, Tourette syndrome and even schizophrenia may also be related to the misregulation of dopamine.

In the October 11 issue of Nature, Sabatini and co-authors Nicolas Tritsch and Jun Ding reported that midbrain dopamine neurons release not only dopamine but also another neurotransmitter called GABA, which lowers neuronal activity. The previously unsuspected presence of GABA could explain why restoring only dopamine could cause initial improvements in Parkinson's patients to eventually wane. And if GABA is made by the same cells that produce other neurotransmitters, such as depression-linked serotonin, similar single-focus treatments could be less successful for the same reason.

"If what we found in the mouse applies to the human, then dopamine's only half the story," said Sabatini.

The surprising GABA story began in the Sabatini lab with a series of experiments designed to see what happens when cells release dopamine. The scientists used optogenetics, a powerful technique that relies on genetic manipulation to selectively sensitize cells to light. In laboratory dishes, researchers tested brain tissue from mice engineered to show activity in dopamine neurons. Typically in such experiments, other neurotransmitters would be blocked in order to highlight dopamine, but Tritsch, a postdoctoral fellow in the Sabatini lab, decided instead to keep the cell in as natural a state as possible.

When Tritsch activated the dopamine neurons and examined their effects on striatal neurons, he naturally expected to observe the effects of dopamine release. Instead, he saw rapid inhibition of the striatal neurons, making it clear that another neurotransmitter which turned out to be the quick-acting GABA was at work. This was so unusual that the team launched a series of experiments to confirm that GABA was being released directly by these dopamine neurons.

A standard way to detect GABA is to look for vesicular GABA transporter, or VGAT, a protein that packages and carries GABA into neurotransmitter vesicles. The scientists silenced the gene that makes VGAT in mice and found that the dopamine neurons released GABA even in the absence of VGAT.

Visit link:
Challenging Parkinson's dogma

Related Posts
This entry was posted in Parkinson's Treatment. Bookmark the permalink.

Comments are closed.