Ecology Team Improves Understanding of Valley-Wide Stream Chemistry

Posted: Published on April 22nd, 2014

This post was added by Dr P. Richardson

Contact Information

Available for logged-in reporters only

Newswise A geostatistical approach for studying environmental conditions in stream networks and landscapes has been successfully applied at a valley-wide scale to assess headwater stream chemistry at high resolution, revealing unexpected patterns in natural chemical components.

Headwater streams make up the majority of stream and river length in watersheds, affecting regional water quality, said Assistant Professor Kevin J. McGuire, associate director of the Virginia Water Resources Research Center in Virginia Techs College of Natural Resources and Environment. However, the actual patterns and causes of variation of water quality in headwater streams are often unknown.

Understanding the chemistry of these streams at a finer scale could help to identify factors impairing water quality and help us protect aquatic ecosystems, said Gene E. Likens, president emeritus and distinguished senior scientist emeritus with the Cary Institute of Ecosystem Studies and the University of Connecticut.

Results of the study that used a new statistical tool to describe spatial patterns of water chemistry in stream networks are published in the April 21 issue of the Proceedings of the National Academies of Science by a team of ecosystem scientists, including McGuire and Likens.

The data used in the new analysis consist of 664 water samples collected every 300 feet throughout all 32 tributaries of the 14-square-mile Hubbard Brook Valley in New Hampshire. The chemistry results were originally reported in 2006 in the journal Biogeochemistry by Likens and Donald C. Buso, manager of field research with the Cary Institute.

McGuire and other members of the National Science Foundations Long-Term Ecological Research team at the Hubbard Brook Ecosystem Study decided that the huge, high-resolution dataset was ideal for a new statistical approach that examines how water flows both within the stream network and across the landscape.

The goal was to visualize patterns that no one has been able to quantify before now and describe how they vary within headwater stream networks, said McGuire. Some chemical constituents vary at a fine scale, that is patterns of chemical change occur over very short distances, for example several hundred feet, but some constituents vary over much larger scales, for example miles. Several chemical constituents that we examined even varied at multiple scales suggesting that nested processes within streams and across the landscape influence the chemistry of stream networks.

The different spatial relationships permit the examination of patterns controlled by landscape versus stream network processes, the article reports. Straight-line and unconnected network spatial relationships indicate landscape influences, such as soil, geology, and vegetation controls of water chemistry, for instance. In contrast, flow-connected relationships provide information on processes affected within the flowing streams.

See the original post:
Ecology Team Improves Understanding of Valley-Wide Stream Chemistry

Related Posts
This entry was posted in Chemistry. Bookmark the permalink.

Comments are closed.