Public release date: 28-May-2013 [ | E-mail | Share ]
Contact: Masatoshi Suzuki msuzuki@vetmed.wisc.edu University of Wisconsin-Madison
MADISON, Wis. Transplantation of human stem cells in an experiment conducted at the University of Wisconsin-Madison improved survival and muscle function in rats used to model ALS, a nerve disease that destroys nerve control of muscles, causing death by respiratory failure.
ALS (amyotrophic lateral sclerosis) is sometimes called "Lou Gehrig's disease." According to the ALS Association, the condition strikes about 5,600 Americans each year. Only about half of patients are alive three years after diagnosis.
In work recently completed at the UW School of Veterinary Medicine, Masatoshi Suzuki, an assistant professor of comparative biosciences, and his colleagues used adult stem cells from human bone marrow and genetically engineered the cells to produce compounds called growth factors that can support damaged nerve cells.
The researchers then implanted the cells directly into the muscles of rats that were genetically modified to have symptoms and nerve damage resembling ALS.
In people, the motor neurons that trigger contraction of leg muscles are up to three feet long. These nerve cells are often the first to suffer damage in ALS, but it's unclear where the deterioration begins. Many scientists have focused on the closer end of the neuron, at the spinal cord, but Suzuki observes that the distant end, where the nerve touches and activates the muscle, is often damaged early in the disease.
The connection between the neuron and the muscle, called the neuro-muscular junction, is where Suzuki focuses his attention. "This is one of our primary differences," Suzuki says. "We know that the neuro-muscular junction is a site of early deterioration, and we suspected that it might be the villain in causing the nerve cell to die. It might not be an innocent victim of damage that starts elsewhere."
Previously, Suzuki found that injecting glial cell line-derived neurotropic factor (GDNF) at the junction helped the neurons survive. The new study, published in the journal Molecular Therapy on May 28, expands the research to show a similar effect from a second compound, called vascular endothelial growth factor.
In the study, Suzuki found that using stem cells to deliver vascular endothelial growth factor alone improved survival and delayed the onset of disease and the decline in muscle function. That result mirrored his earlier study with GDNF.
Read this article:
Engineered stem cell advance points toward treatment for ALS