Environmental enrichment important factor impacting cell transplantation and brain repair

Posted: Published on March 28th, 2013

This post was added by Dr. Richardson

Public release date: 27-Mar-2013 [ | E-mail | Share ]

Contact: Robert Miranda cogcomm@aol.com Cell Transplantation Center of Excellence for Aging and Brain Repair

Putnam Valley, NY. (March. 27, 2013) A team of Korean researchers investigated whether "environmental enrichment" can improve the neurobehavioral function of six week-old mice after transplantation of adipose-derived stem cells (ASCs) to treat hypoxic-ischemic brain injury, and found that brain repair (neurogenesis) was aided in some animals through exercise-induced fibroblast growth factor 2 (FGF2), a strong pro-angiogenic factor.

The post-transplantation environmental enrichment (EE) included use of a running wheel and exposure to "novel objects."

The study appears as an early e-publication for the journal Cell Transplantation, and is now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/pre-prints/ct0633seo.

"FGF2 was synergistically enhanced in the striata of mice treated with EE after ASC transplantation," said study co-author Dr. Sung-Rae Cho of the Yonsei University College of Medicine in Seoul, Korea. "The underlying mechanisms of this synergism included an enhanced repair process, such as higher engraftment of the transplanted ASCs, increased endogenous neurogenesis, and astrocytic activation coupled with the increase in FGF2."

Astrocytes, star-shaped brain cells that are also the most abundant brain cell, perform many functions, including supporting the cells that form the bloodbrain barrier and providing nutrients for nervous system tissue. Multipotent ASCs have been used for promoting angiogenesis (blood vessel growth) and are also known to secrete potentially beneficial growth factors.

"Hypoxic-ischemic brain injury is a major cause of damage to the fetal and neonatal brain," said Dr. Cho. "The majority of affected children demonstrate neurodevelopment impairment. However, cell-based therapy has emerged as a potential treatment. In this study we applied EE in the chronic stage of impairment and studied its synergistic effects in the test mice at six weeks, five weeks after induced brain injury."

The authors noted that cerebral palsy has been associated with hypoxic brain injury, resulting in "considerable incidence or morbidity." They also noted that exercise has shown to be beneficial to children with CP. However, they also reported that ASC transplantation in animal models of CP has yet to be studied.

The researchers concluded that, compatible with other studies, EE increases endogenous cell migration to an ischemic injury and facilitates functional repair.

Excerpt from:
Environmental enrichment important factor impacting cell transplantation and brain repair

Related Posts
This entry was posted in Stem Cell Human Trials. Bookmark the permalink.

Comments are closed.