First genetic-based tool to detect circulating cancer cells in blood

Posted: Published on November 18th, 2014

This post was added by Dr Simmons

PUBLIC RELEASE DATE:

17-Nov-2014

Contact: Megan Fellman fellman@northwestern.edu 847-491-3115 Northwestern University @northwesternu

Metastasis is bad news for cancer patients. Northwestern University scientists now have demonstrated a simple but powerful tool that can detect live cancer cells in the bloodstream, potentially long before the cells could settle somewhere in the body and form a dangerous tumor.

The NanoFlare technology is the first genetic-based approach that is able to detect live circulating tumor cells out of the complex matrix that is human blood -- no easy feat. In a breast cancer study, the NanoFlares easily entered cells and lit up the cell if a biomarker target was present, even if only a trace amount. The NanoFlares are tiny spherical nucleic acids with gold nanoparticle cores outfitted with single-stranded DNA "flares."

"This technology has the potential to profoundly change the way breast cancer in particular and cancers in general are both studied and treated," said Chad A. Mirkin, a nanomedicine expert and a corresponding author of the study.

Mirkin's colleagues C. Shad Thaxton, M.D., and Chonghui Cheng, M.D., both of Northwestern University Feinberg School of Medicine, are also corresponding authors.

The research team, in a paper to be published the week of Nov. 17 by the Proceedings of the National Academy of Sciences (PNAS), reports two key innovations:

"Cancers are very genetically diverse, and it's important to know what cancer subtype a patient has," Mirkin said. "Now you can think about collecting a patient's cells and studying how those cells respond to different therapies. The way a patient responds to treatment depends on the genetic makeup of the cancer."

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering.

More:
First genetic-based tool to detect circulating cancer cells in blood

This entry was posted in Uncategorized. Bookmark the permalink.

Comments are closed.