Genetic Engineering – LeaderU.com

Posted: Published on April 22nd, 2014

This post was added by Dr P. Richardson

Genetic Diseases

The age of genetics has arrived. Society is in the midst of a genetic revolution that some futurists predict will have a greater impact on the culture than the industrial revolution. So, in this essay we are going to look at the area of genetic engineering.

The future of genetics, like that of any other technology, offers great promise but also great peril. Nuclear technology has provided nuclear medicine, nuclear energy, and nuclear weapons. Genetic technology offers the promise of a diverse array of good, questionable, and bad technological applications. Christians, therefore, must help shape the ethical foundations of this technology and its future applications.

How powerful a technology is genetic engineering? For the first time in human history, it is possible to completely redesign existing organisms, including man, and to direct the genetic and reproductive constitution of every living thing. Scientists are no longer limited to breeding and cross-pollination. Powerful genetic tools allow us to change genetic structure at the microscopic level and bypass the normal processes of reproduction.

For the first time in human history, it is also possible to make multiple copies of any existing organism or of certain sections of its genetic structure. This ability to clone existing organisms or their genes gives scientists a powerful tool to reproduce helpful and useful genetic material within a population.

Scientists are also developing techniques to treat and cure genetic diseases through genetic surgery and genetic therapy. They can already identify genetic sequences that are defective, and soon scientists will be able to replace these defects with properly functioning genes.

At this point, let's take a look at the nature of genetic diseases. Genetic diseases arise from a number of causes. The first are single-gene defects. Some of these single-gene diseases are dominant and therefore cannot be masked by a second normal gene on the homologous chromosome (the other strand of a chromosome pair). An example is Huntington's chorea (a fatal disease that strikes in the middle of life and leads to progressive physical and mental deterioration). Many other single-gene diseases are recessive and are expressed only when both chromosomes have a defect. Examples of these diseases are sickle-cell anemia, which leads to the production of malformed red blood cells, and cystic fibrosis, which leads to a malfunction of the respiratory and digestive systems.

Another group of single-gene diseases includes the sex-linked diseases. Because the Y chromosome in men is much shorter than the X chromosome it pairs with, many genes on the X chromosome are absent on the homologous Y chromosome. Men, therefore, will show a higher incidence of genetic diseases such as hemophilia or color blindness. Even though these are recessive, males do not have a homologous gene on their Y chromosome that could contain a normal gene to mask it.

Another major cause of genetic disease is chromosomal abnormalities. Some diseases result from an additional chromosome. Down's syndrome is caused by trisomy-21 (three chromosomes at chromosome twenty-one). Klinefelter's syndrome results from the addition of an extra X chromosome (these men have a chromosome pattern that is XXY). Other genetic defects result from the duplication, deletion, or rearrangement (called translocation) of a gene sequence.

Genetic engineering offers the promise of eventually treating and curing these genetic defects. Although this is a promise in the future, we are already involved in genetic counseling and the significant ethical concerns it presents. Let's turn now to look at the topic of genetic counseling.

Read more:
Genetic Engineering - LeaderU.com

Related Posts
This entry was posted in Genetic Engineering. Bookmark the permalink.

Comments are closed.