In situ reprogramming of cardiac fibroblasts into cardiomyocytes in mouse heart with chemicals | Acta Pharmacologica … – Nature.com

Posted: Published on June 21st, 2024

This post was added by Dr Simmons

Giudicessi JR, Kullo IJ, Ackerman MJ. Precision cardiovascular medicine: state of genetic testing. Mayo Clin Proc. 2017;92:64262.

Article PubMed Google Scholar

Yu GH, Gong XY, Xu Y, Sun HY, Liu YQ, Zhai CX, et al. The global burden and trends of four major types of heart disease, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Public Health. 2023;220:19.

Article PubMed Google Scholar

Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2022;118:327287.

Article CAS Google Scholar

Cohn JN, Ferrari R, Sharpe N, Remodeling IFC. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol. 2000;35:56982.

Article CAS PubMed Google Scholar

Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331:107880.

Article CAS PubMed PubMed Central Google Scholar

Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci USA. 2013;110:18792.

Article CAS PubMed Google Scholar

Wang ZN, Cui M, Shah AM, Ye WD, Tan W, Min YL, et al. Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling. Proc Natl Acad Sci USA. 2019;116:1845565.

Article CAS PubMed PubMed Central Google Scholar

Xin M, Olson EN, Bassel-Duby R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Bio. 2013;14:52941.

Article CAS Google Scholar

Paoletti C, Chiono V. Bioengineering methods in MicroRNA-mediated direct reprogramming of fibroblasts into cardiomyocytes. Front Cardiovasc Med. 2021;8:750438.

Article CAS PubMed PubMed Central Google Scholar

Dixit P, Katare R. Challenges in identifying the best source of stem cells for cardiac regeneration therapy. Stem Cell Res Ther. 2015;6:26.

Article PubMed PubMed Central Google Scholar

Rikhtegar R, Pezeshkian M, Dolati S, Safaie N, Rad AA, Mahdipour M, et al. Stem cells as therapy for heart disease: iPSCs, ESCs, CSCs, and skeletal myoblasts. Biomed Pharmacother. 2019;109:30413.

Article CAS PubMed Google Scholar

Yoshida Y, Yamanaka S. Induced pluripotent stem cells 10 years later for cardiac applications. Circ Res. 2017;120:195868.

Article CAS PubMed Google Scholar

Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol. 2020;17:34159.

Article PubMed PubMed Central Google Scholar

Garbern JC, Lee RT. Heart regeneration: 20 years of progress and renewed optimism. Dev Cell. 2022;57:42439.

Article CAS PubMed PubMed Central Google Scholar

Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:37586.

Article CAS PubMed PubMed Central Google Scholar

Qian L, Huang Y, Foley A, Vedantham V, Spencer I, Conway SJ, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485:5938.

Song KH, Nam YJ, Luo X, Qi XX, Tan W, Huang GN, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485:599.

Article CAS PubMed PubMed Central Google Scholar

Jayawardena TM, Egemnazarov B, Finch EA, Zhang LN, Payne JA, Pandya K, et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circul Res. 2012;110:1465.

Article CAS Google Scholar

Wu GZ, Huang ZP, Wang DZ. microRNAs in cardiac regeneration and cardiovascular disease. Sci China Life Sci. 2013;56:90713.

Article CAS PubMed PubMed Central Google Scholar

Hodgkinson CP, Kang MH, Dal-Pra S, Mirotsou M, Dzau VJ. MicroRNAs and cardiac regeneration. Circul Res. 2015;116:170011.

Article CAS Google Scholar

Fu YB, Huang CW, Xu XX, Gu HF, Ye YQ, Jiang CZ, et al. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res. 2015;25:101324.

Article CAS PubMed PubMed Central Google Scholar

Huang CW, Tu WZ, Fu YB, Wang JX, Xie X. Chemical-induced cardiac reprogramming in vivo. Cell Res. 2018;28:6869.

Article CAS PubMed PubMed Central Google Scholar

Tian T, Yang ZY, Li XG. Tissue clearing technique: Recent progress and biomedical applications. J Anat. 2021;238:489507.

Article PubMed Google Scholar

Kolesov H, Olejnckov V, Kvasilov A, Gregorovicov M, Sedmera D. Tissue clearing and imaging methods for cardiovascular development. Iscience. 2021;24:102387.

Mai HC, Rong ZY, Zhao S, Cai RY, Steinke H, Bechmann I, et al. Scalable tissue labeling and clearing of intact human organs. Nat Protoc. 2022;17:2188.

Article CAS PubMed Google Scholar

Susaki EA, Tainaka K, Perrin D, Yukinaga H, Kuno A, Ueda HR. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat Protoc. 2015;10:170927.

Article CAS PubMed Google Scholar

Matsumoto K, Mitani TT, Horiguchi SA, Kaneshiro J, Murakami TC, Mano T, et al. Advanced CUBIC tissue clearing for whole-organ cell profiling. Nat Protoc. 2019;14:350637.

Article CAS PubMed Google Scholar

Jayawardena TM, Finch EA, Zhang LN, Zhang HT, Hodgkinson CP, Pratt RE, et al. MicroRNA induced cardiac reprogramming in vivo evidence for mature cardiac myocytes and improved cardiac function. Circulation Res. 2015;116:418.

Article CAS PubMed Google Scholar

He LJ, Huang XZ, Kanisicak O, Li Y, Wang Y, Li Y, et al. Preexisting endothelial cells mediate cardiac neovascularization after injury. J Clin Invest. 2017;127:296881.

Article PubMed PubMed Central Google Scholar

He LJ, Lui KO, Zhou B. The formation of coronary vessels in cardiac development and disease. Csh Perspect Biol. 2020;12:a037168.

Li HX, Weng WD, Zhou B. Perfect duet: dual recombinases improve genetic resolution. Cell Proliferat. 2023;56:e13446.

Romagnuolo R, Masoudpour H, Porta-Sanchez A, Qiang B, Barry J, Laskary A, et al. Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias. Stem Cell Rep. 2019;12:96781.

Article Google Scholar

Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y, et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature. 2016;538:38891.

Article CAS PubMed Google Scholar

Liu YW, Chen B, Yang X, Fugate JA, Kalucki FA, Futakuchi-Tsuchida A, et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol. 2018;36:597605.

Article CAS PubMed PubMed Central Google Scholar

Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510:2737.

Article CAS PubMed PubMed Central Google Scholar

Gao L, Gregorich ZR, Zhu W, Mattapally S, Oduk Y, Lou X, et al. Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation. 2018;137:171230.

Article PubMed Google Scholar

Li W, Zhou H, Abujarour R, Zhu S, Young Joo J, Lin T, et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells. 2009;27:29923000.

Article CAS PubMed Google Scholar

Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341:6514.

Article CAS PubMed Google Scholar

Liuyang S, Wang G, Wang Y, He H, Lyu Y, Cheng L, et al. Highly efficient and rapid generation of human pluripotent stem cells by chemical reprogramming. Cell Stem Cell. 2023;30:4509.e9.

Article CAS PubMed Google Scholar

Long Y, Wang M, Gu H, Xie X. Bromodeoxyuridine promotes full-chemical induction of mouse pluripotent stem cells. Cell Res. 2015;25:11714.

Article CAS PubMed PubMed Central Google Scholar

Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y, Fu JD, et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science. 2016;352:121620.

Article CAS PubMed Google Scholar

Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, et al. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res. 2015;25:6456.

Article PubMed PubMed Central Google Scholar

Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, et al. The ground state of embryonic stem cell self-renewal. Nature. 2008;453:519U5.

Article CAS PubMed PubMed Central Google Scholar

Yoda K, Ohnuki Y, Masui S, Kurosawa H. Optimized conditions for the supplementation of human-induced pluripotent stem cell cultures with a GSK-3 inhibitor during embryoid body formation with the aim of inducing differentiation into mesodermal and cardiac lineage. J Biosci Bioeng. 2020;129:3718.

Article CAS PubMed Google Scholar

Kametani Y, Tanaka S, Wada Y, Suzuki S, Umeda A, Nishinaka K, et al. Yes-associated protein activation potentiates glycogen synthase kinase-3 inhibitor-induced proliferation of neonatal cardiomyocytes and iPS cell-derived cardiomyocytes. J Cell Physiol. 2022;237:253949.

Article CAS PubMed PubMed Central Google Scholar

Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, et al. A small-molecule inhibitor of Tgf- signaling replaces in reprogramming by inducing. Cell Stem Cell. 2009;5:491503.

Article CAS PubMed PubMed Central Google Scholar

Zhao YB, Londono P, Cao YQ, Sharpe EJ, Proenza C, ORourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;6:8243.

Schorderetslatkine S, Baulieu EM. Forskolin increases camp and inhibits progesterone induced meiosis reinitiation in xenopus-laevis oocytes. Endocrinology. 1982;111:13857.

Article CAS PubMed Google Scholar

Matsumura K, Mayama T, Lin H, Sakamoto Y, Ogawa K, Imanaga I. Effects of cyclic AMP on the function of the cardiac gap junction during hypoxia. Exp Clin Cardiol. 2006;11:28693.

CAS PubMed PubMed Central Google Scholar

Yildirim E, Zhang ZJ, Uz T, Chen CQ, Manev R, Manev H. Valproate administration to mice increases histone acetylation and 5-lipoxygenase content in the hippocampus. Neurosci Lett. 2003;345:1413.

Article CAS PubMed Google Scholar

View post:
In situ reprogramming of cardiac fibroblasts into cardiomyocytes in mouse heart with chemicals | Acta Pharmacologica ... - Nature.com

Related Posts
This entry was posted in Myocardial Infarction. Bookmark the permalink.

Comments are closed.