'Individualized' therapy for the brain targets specific gene mutations causing dementia and ALS

Posted: Published on October 17th, 2013

This post was added by Dr Simmons

Public release date: 16-Oct-2013 [ | E-mail | Share ]

Contact: Stephanie Desmon sdesmon1@jhmi.edu 410-955-8665 Johns Hopkins Medicine

Johns Hopkins scientists have developed new drugs that at least in a laboratory dish appear to halt the brain-destroying impact of a genetic mutation at work in some forms of two incurable diseases, amyotrophic lateral sclerosis (ALS) and dementia.

They made the finding by using neurons they created from stem cells known as induced pluripotent stem cells (iPS cells), which are derived from the skin of people with ALS who have a gene mutation that interferes with the process of making proteins needed for normal neuron function.

"Efforts to treat neurodegenerative diseases have the highest failure rate for all clinical trials," says Jeffrey D. Rothstein, M.D., Ph.D., a professor of neurology and neuroscience at the Johns Hopkins University School of Medicine and leader of the research described online in the journal Neuron. "But with this iPS technology, we think we can target an exact subset of patients with a specific mutation and succeed. It's individualized brain therapy, just the sort of thing that has been done in cancer, but not yet in neurology."

Scientists in 2011 discovered that more than 40 percent of patients with an inherited form of ALS and at least 10 percent of patients with the non-inherited sporadic form have a mutation in the C9ORF72 gene. The mutation also occurs very often in people with frontotemporal dementia, the second-most-common form of dementia after Alzheimer's disease. The same research appeared to explain why some people develop both ALS and the dementia simultaneously and that, in some families, one sibling might develop ALS while another might develop dementia.

In the C9ORF72 gene of a normal person, there are up to 30 repeats of a series of six DNA letters (GGGGCC); but in people with the genetic glitch, the string can be repeated thousands of times. Rothstein, who is also director of the Johns Hopkins Brain Science Institute and the Robert Packard Center for ALS Research, used his large bank of iPS cell lines from ALS patients to identify several with the C9ORF72 mutation, then experimented with them to figure out the mechanism by which the "repeats" were causing the brain cell death characteristic of ALS.

In a series of experiments, Rothstein says, they discovered that in iPS neurons with the mutation, the process of using the DNA blueprint to make RNA and then produce protein is disrupted. Normally, RNA-binding proteins facilitate the production of RNA. Instead, in the iPS neurons with the C9ORF72 mutation, the RNA made from the repeating GGGGCC strings was bunching up, gumming up the works by acting like flypaper and grabbing hold of the extremely important RNA binding proteins, including one known as ADARB2, needed for the proper production of many other cellular RNAs. Overall, the C9ORF72 mutation made the cell produce abnormal amounts of many other normal RNAs and made the cells very senstive to stress.

To counter this effect, the researchers developed a number of chemical compounds targeting the problem. This compound behaved like a coating that matches up to the GGGGCC repeats like velcro, keeping the flypaper-like repeats from attracting the bait, allowing the RNA-binding protein to properly do its job.

Rothstein says Isis Pharmaceuticals helped develop many of the studied compounds and, by working closely with the Johns Hopkins teams, could begin testing it in human ALS patients with the C9ORF72 mutation in the next several years. In collaboration with the National Institutes of Health, plans are already underway to begin to identify a group of patients with the C9ORF72 mutation for future research.

The rest is here:
'Individualized' therapy for the brain targets specific gene mutations causing dementia and ALS

This entry was posted in Uncategorized. Bookmark the permalink.

Comments are closed.