Dallas, Texas (PRWEB) February 02, 2014
Stem cell research and experimentation has been in process for well over five decades, as stem cells have the unique ability to divide and replicate repeatedly. In addition, their unspecialized nature allows them to differentiate into a wide variety of specialized cell types. The possibilities arising from these characteristics have caused great commercial interest, with potential applications ranging from the use of stem cells in reversal or treatment of disease, to targeted cell therapy, tissue regeneration, pharmacological testing on cell-specific tissues, and more. Diseases such as Huntingtons Chorea, Parkinsons Disease, and spinal cord injuries are examples of clinical applications in which stem cells could offer benefits in halting or even reversing damage.
Traditionally, scientists have worked with both embryonic and adult stem cells as research tools. While the appeal of embryonic cells has been their ability to differentiate into any type of cell, there has been significant ethical, moral and spiritual controversy surrounding their use for research purposes. Although some adult stem cells do have differentiation capacity, it is often limited in nature, which creates narrow options for use. Thus, induced pluripotent stem cells sector (http://www.reportsnreports.com/reports/206575-complete-2012-13-induced-pluripotent-stem-cell-industry-report.html) represent a promising combination of adult and embryonic stem cell characteristics.
Continued research and experimentation has resulted in numerous advances over the last few years. In one example, the University of Michigan announced in Circulation Research (2012) that they had developed innovative methods for use of induced pluripotent stem cells derived from skin biopsies to create cardiac muscle cells. This accomplishment quickly fueled other research into the use of iPSCs for the reversal and repair of diseased heart tissue.
Similar advances will continue to be perfected for use of reprogrammed adult cells in the treatment of other diseases and disorders. Original techniques for iPSC production, such as viral induced transcription processes, are being replaced with newer technologies as private industries join with the scientific community to develop safe and efficient methods of iPSC production. With sustained research and experimentation, established guidelines for effective production of iPSCs will be commonplace.
In summary, induced pluripotent stem cells represent a promising tool for use in the reversal and repair of many previously incurable diseases.
Market Metrics - iPSC Research Products: For this reason a large and thriving research products market has grown into existence for the cell type. The number of iPSC research products sold worldwide has been growing at an annual rate of 14.7% for the past five years. In addition, 22% of all stem cell researchers now self-report as having used induced pluripotent stem cells within a research project. It is clear that iPSCs are a vital research trend within the scientific community.
A distinctive feature of this report is an end-user survey of 274 researchers (131 U.S. / 143 International) that identify as having induced pluripotent stem cells as their core research focus. These survey findings reveal iPSC researcher needs, technical preferences, key factors influencing buying decisions, and more. They can be used to make effective product development decisions, create targeted marketing messages, and produce higher prospect-to-client conversion rates.
Remember, to benefit from this lucrative product market, you need to anticipate and serve the needs of your clients, or your competitors will.
Purchase Report @ http://www.reportsnreports.com/purchase.aspx?name=206575.
Read the rest here:
iPSC Induced Pluripotent Stem Cell Market 2013 14 Complete Report at ReportsnReports.com