Alternative Titles:Pteridophyta, cryptogam, pteridophyte, seedless vascular plant, vascular cryptogam
Lower vascular plant, formerly pteridophyte, also called vascular cryptogam, any of the spore-bearing vascular plants, including the ferns, club mosses, spike mosses, quillworts, horsetails, and whisk ferns. Once considered of the same evolutionary line, these plants were formerly placed in the single group Pteridophyta and were known as the ferns and fern allies. Although modern studies have shown that the plants are not in fact related, these terms are still used in discussion of the lower vascular plants.
Vascular plants are those that possess a specialized conducting system for the transport of water, minerals, and food materials, as opposed to the more primitive bryophytesmosses and liverwortswhich lack such a system. They include both the seed plantsangiosperms and gymnosperms, the dominant plants on Earth todayand plants that reproduce by sporesthe ferns and other so-called lower vascular plants.
The pteridophytes represent the oldest of land plants. In their early evolution (during the Devonian and Carboniferous periods, 416 million to 299 million years ago), there were many forms that are now extinct. The sphenophytes, for example, were once a large and diverse group of herbs, shrubs, vines, and trees but are now limited to only 15 species of horsetails; the woody lycophytes (club mosses) are entirely gone, leaving only a faint trail in their reduced modern representatives. Much of the fossil fern foliage of the Carboniferous Period is of the uncharacteristic seed ferns, which are the probable antecedents of the flowering plants. Modern ferns represent an explosion of evolution in Cretaceous times (145.5 million to 65.5 million years ago).
The pteridophytes are not an economically important group. Though they are used locally by peoples around the world for medicines and food, their greatest value today is in horticulture (ferns). Their remains, however, provide the bulk of the worlds coal beds, and their relatively simple structure and life cycle make them extremely valuable to researchers in understanding the overall picture of plant structure and evolution.
A discussion of all types of plants is found in the article plant. For a discussion of the other types of vascular plants, see gymnosperm and angiosperm. For a discussion of the nonvascular plants, see bryophyte.
The conduction system of vascular plants includes the xylem, composed largely of tracheids (tubular cells) in the lower vascular plants and gymnosperms and vessels in angiosperms, for conduction of water and minerals; and the phloem (sieve cells) for conduction of food materials. These vascular tissues are arranged in different patterns in different plant groups and in different parts of the plant.
The vascular cylinder of a stem or root is called the stele. The simplest and apparently most primitive type of stele is the protostele, in which the xylem is in the centre of the stem, surrounded by a narrow band of phloem. It in turn is bounded by a pericycle of one or two cell layers and a single cell layer of endodermis. The pericycle is generally the layer giving rise to the branches in roots, and the endodermis seems to regulate the flow of water and dissolved substances from the surrounding cortex. More common in fern stems are siphonosteles, having a pith in the centre with the vascular tissue forming a cylinder around it. Where a fern leaf is attached to a stem, a part of the vascular tissue of the stem goes into it (a leaf trace), making a slight gap, filled by parenchyma cells (generalized plant cells), in the vascular cylinder. If the leaves are distant and the stem long and creeping, a single gap will be seen in cross section; if leaves are close together or numerous, the gaps overlap, causing the cylinder to appear in cross section as a ring of disconnected round or elongate bars of vascular tissue.
Generally in pteridophytes, when the young organs mature, no further growth in diameter takes place. In several extinct groups a special ring of cells, the cambium, produced additional xylem to the inside and phloem cells to the outside (secondary growth as opposed to primary growth achieved by apical activity of the stem and root), resulting in increased diameter and a truly woody plant. This is common in many seed plants today, but in the extant pteridophytes only two genera (Botrychium and Isoetes) show a slight vestige of secondary growth. Even in todays tree ferns (Cyathea, Dicksonia, Cibotium), with trunks up to 25 metres (80 feet) tall, the tissues are entirely the result of growth from the stem apex. Their strength is derived not from woody growth in diameter but by strengthening tissues surrounding the vascular bundles and in some cases by a mantle of roots.
The cells of the vascular strands in pteridophytes are mainly tracheids, sieve cells, parenchyma, and endodermal cells. The tracheids, which comprise the xylem, or water-conducting tissue, are normally long, narrow, and attenuated at the tips. Their secondary walls display ladderlike (scalariform) thickenings. The largest tracheids are several centimetres long, but most are much smaller. Vessel cells, which have evolved in several lines of fern evolution and are the principal water-conducting cell type of flowering plants, are modified tracheids in which the end walls have lost their primary membranes, thus providing direct, unimpeded connections for water transport between the cells. Vessels, longitudinal channels composed of linear series of such perforated cells, have been reported from such diverse ferns as waterclover (Marsilea) and bracken (Pteridium).
The phloem is composed mainly of sieve cellsnarrow, elongated units that differ from the tracheids in having persistent protoplasts and nuclei (i.e., they are still alive at functional maturity) and in lacking secondary walls with elaborate pitting. Sieve cells usually display more or less distinguishable sievelike areas, through which, presumably, organic foods pass in their travels through the stem and other plant organs. There are various arrangements of xylem and phloem, but usually a single strand composed of both is surrounded by parenchyma cells, the pericycle (a thin zone of living cells just within the endodermis), and an outer layer of cells with specialized walls, the endodermis. Endodermal cells in young stems are provided with special strips of secondary wall material known as Casparian strips on their radial walls (i.e., on all the cell walls except the two that face toward the stem axis and the stem surface). As the stems age, however, there is a tendency for the endodermal cells to become thick-walled around the entire circumference.
The pith is made up of parenchyma cells as a rule, but, in some fern genera, scattered tracheid-like cells are found as well. The cells of pteridophyte stems differ from those of many seed plants in lacking collenchyma (modified parenchyma cells with expanded primary walls) and true stone cells. Latex-producing cells in lower vascular plants are rare.
Taproots are unknown in lower vascular plants. All pteridophyte roots are referred to as adventitious, in the sense that they arise at points along the stem. In internal structure, the roots are generally regarded as being much less diverse than the stems. They are protostelic, lacking pith and gaps, and they grow from one or more apical initials (cells that divide to produce all the cells and tissues of an organ), producing a root cap outwardly and the permanent tissues of the root inwardly. They entirely lack secondary growth (continued growth in thickness).
The surface cells of the epidermis produce root hairs near the root apex. These cells are generally thin-walled, in contrast to the cells of the cortex, lying below the surface, which ultimately may become very thick-walled. The root hairs have fundamental importance in absorption of water and nutrients and in attachment of the plant to the soil or other growing surface. The endodermis of the root is well marked, and Casparian strips are present, as in the stem. There is also a tendency for the endodermis in older parts of the roots to become thick-walled and hardened (sclerified).
The production and development of xylem tissue in the steles of most pteridophyte roots is diarch; that is, the first matured xylem appears along two lines at the outer periphery of the xylem strand. The xylem is surrounded by phloem, and the branch roots arise from the pericycle.
Stem appendages known as leaves take various forms that evolved independently in different groups of lower vascular plants. The simplest are scalelike emergences, or enations, that are not served by vascular tissue (i.e., they have no veins), found in some extinct groups and in modern whisk ferns (Psilotum). The lycophytes have scalelike, needlelike, or awl-shaped microphylls with a single, unbranched vein. The sphenophytes have sphenophyllsscalelike leaves with a single vein in the modern Equisetum or wedge-shaped leaves with a dichotomously forking vein system in many of the fossil forms. These leaf forms are all so simple that the vascular connection with the stem stele does not affect the stele configuration and causes no leaf gap. On the other hand, the complex leaves of ferns (pteridophylls, or megaphylls) probably evolved from a branching stem system and affect the stele by drawing out enough vascular tissue to cause a leaf gap.
The life cycle of pteridophytes exhibits an alternation of generations between gametophytes and sporophytes. The gametophytes are sexual plants producing eggs or sperm or both, and the sporophytes are asexual plants producing spores that are capable of producing new gametophytes. The sporophyte of lower vascular plants, in contrast to that of mosses and liverworts, is obviously the dominant generation. Unlike seed plants, which also have dominant sporophytes, pteridophytes reproduce not by forming seeds but by producing sporesminute single cells covered by a protective wall and readily carried by the wind. The life cycle of these plants is referred to as pteridophytic, or fernlike, as opposed to spermatophytic (seed-plant-like).
The plant begins life as a spore. The germinating spore grows into a small gametophyte, or prothallium, usually only 0.3 to 1 centimetre (0.2 to 0.4 inch) long or broad, bearing rhizoids (hairlike structures for water and mineral absorption and attachment to the soil). Gametophytes may be green, occurring on the soil surface, or colourless, occurring under the soil (usually saprophytically, with the aid of a mycorrhizal fungus). Sex organs, called antheridia and archegonia, produce sperm and eggs, respectively. The sperm require water in which to swim to the egg for fertilization. The fertilized egg, or zygote, contains one set of chromosomes from each of the two sex cells. The zygote then divides, developing into an embryo, which in turn develops the first leaf, root, and stem apex. The resulting plant, the sporophyte, is the characteristic plant that is normally seen. At maturity, sporangia (spore cases) are produced; in them the spore mother cells divide by a special nuclear division, meiosis, in which the chromosome number is reduced to a single set for each of four resulting spores.
In most pteridophytes all the spores of each plant are alike, and the plant is said to be homosporous. A few groups (the lycophytes Selaginella and Isoetes and, among the ferns, the water-fern families Marsileaceae, Salviniaceae, and Azollaceae) are heterosporous, forming two types of spores. These plants have two kinds of sporangia, one producing a few large megaspores (holding food reserves for the early development of the embryo) and the other producing many small microspores. The microspore divides to form a reduced gametophyte, merely a jacket of cells and a few sperm cells; the megaspore divides to form a mass of tissue and archegonia, each enclosing an egg.
The life cycle of the lower vascular plants is basically the same as that of seed plants. The main difference is that in seed plants the new young sporophyte (embryo) is kept within a structure (seed) on the parent plant before dispersal and perhaps a resting stage, whereas in lower vascular plants dispersal and resting take place in the spore before the embryo is formed.
Follow this link:
Lower vascular plant | biology | Britannica.com
- Vascular Cell and Molecular Biology | Center for Vascular Biology | Weill Cornell ... [Last Updated On: April 13th, 2018] [Originally Added On: April 13th, 2018]
- APVBO-Asia Pacific Vascular Biology Organization Conference [Last Updated On: April 18th, 2018] [Originally Added On: April 18th, 2018]
- Vascular Biology Conferences | Vascular Surgery ... [Last Updated On: May 5th, 2018] [Originally Added On: May 5th, 2018]
- Vascular Discovery: From Genes to Medicine [Last Updated On: May 7th, 2018] [Originally Added On: May 7th, 2018]
- 2019 Vascular Cell Biology Conference GRC [Last Updated On: May 26th, 2018] [Originally Added On: May 26th, 2018]
- Biology 211: Taxonomy of Flowering Plants [Last Updated On: June 7th, 2018] [Originally Added On: June 7th, 2018]
- esm-evbo2019.org - Menu [Last Updated On: July 27th, 2018] [Originally Added On: July 27th, 2018]
- Vascular Biology | Pulmonary, Allergy, Sleep & Critical ... [Last Updated On: November 16th, 2018] [Originally Added On: November 16th, 2018]
- Vascular Biology - NAVBO [Last Updated On: November 20th, 2018] [Originally Added On: November 20th, 2018]
- 2019 Cerebral Vascular Biology Conference - cvent.com [Last Updated On: November 21st, 2018] [Originally Added On: November 21st, 2018]
- PPARs and Their Emerging Role in Vascular Biology ... [Last Updated On: November 26th, 2018] [Originally Added On: November 26th, 2018]
- Vascular Biology Chicago Medicine [Last Updated On: November 30th, 2018] [Originally Added On: November 30th, 2018]
- Vascular Biology | Society for Vascular Surgery [Last Updated On: November 30th, 2018] [Originally Added On: November 30th, 2018]
- Vascular Biology 2018 - NAVBO [Last Updated On: December 19th, 2018] [Originally Added On: December 19th, 2018]
- Vascular Biology 2019 - NAVBO [Last Updated On: December 20th, 2018] [Originally Added On: December 20th, 2018]
- Vascular Biology [Last Updated On: January 22nd, 2019] [Originally Added On: January 22nd, 2019]
- pvb2019.org Plant Vascular Biology Conference 2019 [Last Updated On: January 31st, 2019] [Originally Added On: January 31st, 2019]
- Plant Physiology | Basic Biology [Last Updated On: March 12th, 2019] [Originally Added On: March 12th, 2019]
- Awards - esm-evbo2019.org [Last Updated On: April 23rd, 2019] [Originally Added On: April 23rd, 2019]
- Medication and Exercise to Prevent Muscle Loss - Next Avenue [Last Updated On: September 24th, 2019] [Originally Added On: September 24th, 2019]
- A Snail as Fast as a Bullet, and Other Darwin-Defying Marvels - Discovery Institute [Last Updated On: September 24th, 2019] [Originally Added On: September 24th, 2019]
- Nature up close: Life in the Humboldt Penguin National Reserve - CBS News [Last Updated On: September 24th, 2019] [Originally Added On: September 24th, 2019]
- Oklahoma new hires and promotions announced - Oklahoman.com [Last Updated On: September 24th, 2019] [Originally Added On: September 24th, 2019]
- Quinn Capers IV, MD - TCTMD [Last Updated On: September 24th, 2019] [Originally Added On: September 24th, 2019]
- Cardiovascular Repair And Reconstruction Devices Market Global Industry Insights by Top Vendors, Growth, Revenue and Forecast Outlook 2019-2025 -... [Last Updated On: September 26th, 2019] [Originally Added On: September 26th, 2019]
- Four health projects at Boston Childrens Hospital that could help adults - The Boston Globe [Last Updated On: September 30th, 2019] [Originally Added On: September 30th, 2019]
- Research Officer/ Postdoctoral Researcher - The Conversation AU [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]
- UNSW skin cancer researcher Levon Khachigian hit with string of retractions - ABC News [Last Updated On: October 16th, 2019] [Originally Added On: October 16th, 2019]
- Michal Wszola: We Expect to Transplant the Bioprinted Bionic Pancreas in Three to Five Years - 3DPrint.com [Last Updated On: October 24th, 2019] [Originally Added On: October 24th, 2019]
- 'The Blob': This mysterious 'smart' slime can solve puzzles and make decisions - CNBC [Last Updated On: October 24th, 2019] [Originally Added On: October 24th, 2019]
- University of Maryland and DOD collaborate to study Tick-borne Infections using 3-D models of human blood vessels - Outbreak News Today [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Submerged Vegetation Mirrors Coast's Health - Coastal Review Online [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Another health warning for e-cigarette users that has nothing to do with lung disease - MarketWatch [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- E-Cigarettes Take a Dangerous Toll on Heart Health - DocWire News [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Vascular biology Department of Surgery College of ... [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- US Nobel laureates tell us what they think about cancer research, moonshots, the dark side, funding, meritocracy, herd mentality, Trump, and joy - The... [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- Growing Organs in the Lab: One Step Closer to Reality - BioSpace [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- Inotrem Announces Enrollment of First Patient in its Phase IIb ASTONISH Trial for Nangibotide in the Treatment of Septic Shock - Business Wire [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- Another Study Suggests E-cigarettes Hurt Heart Health More Than Regular Cigarettes - Science Times [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- Cleveland Clinic awarded $12 million by NIH to study the link between gut microbes and heart disease - Crain's Cleveland Business [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- JanOne Acquires Worldwide, Exclusive License for Promising Treatment of Peripheral Arterial Disease (PAD) - Yahoo Finance [Last Updated On: November 27th, 2019] [Originally Added On: November 27th, 2019]
- Germ-free lungs of newborn mice are partially protected against hyperoxia - The Mix [Last Updated On: November 27th, 2019] [Originally Added On: November 27th, 2019]
- Bethesda Health Physician Group Welcomes Fellowship-Trained Endocrine Surgeon Jessica L. Buicko, MD, to Its Team - The Boca Raton Tribune [Last Updated On: November 27th, 2019] [Originally Added On: November 27th, 2019]
- 9 Harvard researchers named AAAS Fellows Harvard - Harvard Gazette [Last Updated On: November 27th, 2019] [Originally Added On: November 27th, 2019]
- Top Technical Advances of 2019 - The Scientist [Last Updated On: December 29th, 2019] [Originally Added On: December 29th, 2019]
- Growing up Tyrannosaurus rex: Osteohistology refutes the pygmy Nanotyrannus and supports ontogenetic niche partitioning in juvenile Tyrannosaurus -... [Last Updated On: January 2nd, 2020] [Originally Added On: January 2nd, 2020]
- UCC currently taking applicants for 21 jobs with some incredible pay - Cork Beo [Last Updated On: January 2nd, 2020] [Originally Added On: January 2nd, 2020]
- Vascular Biology | Surgery Research | Michigan Medicine ... [Last Updated On: January 2nd, 2020] [Originally Added On: January 2nd, 2020]
- Sandy Bottom wetlands to receive protection for 'national ecological significance' - Citizen Times [Last Updated On: January 14th, 2020] [Originally Added On: January 14th, 2020]
- Why biotech is a boon for patients and investors - Spear's WMS [Last Updated On: January 14th, 2020] [Originally Added On: January 14th, 2020]
- Exonate Announces Collaboration With Janssen to Develop a New Eye Drop for the Treatment of Retinal Vascular Diseases Including Wet Age-related... [Last Updated On: January 14th, 2020] [Originally Added On: January 14th, 2020]
- G-protein Coupled Receptor Market Competitive Research And Precise Outlook 2019 To 2025 Dagoretti News - Dagoretti News [Last Updated On: January 18th, 2020] [Originally Added On: January 18th, 2020]
- Scientists revealed the oldest known scorpion on Earth - Tech Explorist [Last Updated On: January 18th, 2020] [Originally Added On: January 18th, 2020]
- How biology creates networks that are cheap, robust, and efficient - Penn: Office of University Communications [Last Updated On: January 18th, 2020] [Originally Added On: January 18th, 2020]
- Genome editing heralds new era of disease research, therapy - The Augusta Chronicle [Last Updated On: January 18th, 2020] [Originally Added On: January 18th, 2020]
- Research Fellow in Vascular Stem Cell Biology job with QUEENS UNIVERSITY BELFAST | 195527 - Times Higher Education (THE) [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- More than skin deep: the latest innovation in 3D printing - Med-Tech Innovation [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- Examining the link between menopause and heart disease risk - Medical News Bulletin [Last Updated On: February 10th, 2020] [Originally Added On: February 10th, 2020]
- Women Face an Increased Risk of Heart Disease With AgeRunning Can Help - runnersworld.com [Last Updated On: February 12th, 2020] [Originally Added On: February 12th, 2020]
- G-protein Coupled Receptor Market Competitive Research And Precise Outlook 2019 To 2025 - Galus Australis [Last Updated On: February 15th, 2020] [Originally Added On: February 15th, 2020]
- Valentine's Day Matters of the Heart, Biopharma-Style - BioSpace [Last Updated On: February 15th, 2020] [Originally Added On: February 15th, 2020]
- The Addicted Gardener: Environmental tidbits from around the world - Wicked Local Sharon [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- UI at 150 & Beyond: 'The Quad was the best no matter what the weather' - Champaign/Urbana News-Gazette [Last Updated On: February 22nd, 2020] [Originally Added On: February 22nd, 2020]
- The Addicted Gardener: Environmental tidbits from around the world - Wicked Local Dedham [Last Updated On: February 23rd, 2020] [Originally Added On: February 23rd, 2020]
- THE ADDICTED GARDENER: Environmental tidbits from around the world - Wicked Local Wareham [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- 'Little Foot' skull reveals how this more than 3 million year old human ancestor lived - HeritageDaily [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- It's Not Only About Neurons - The Good Men Project [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- Who is Sir Patrick Vallance and what is his role in government during coronavirus outbreak? - The Scottish Sun [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- University of Washington Pathology Professor Dies of COVID-19 - The Scientist [Last Updated On: March 22nd, 2020] [Originally Added On: March 22nd, 2020]
- THE ADDICTED GARDENER: Environmental tidbits from around the world - Wicked Local Rochester [Last Updated On: March 23rd, 2020] [Originally Added On: March 23rd, 2020]
- Ancient human ancestor 'Little Foot' probably lived in trees, new research finds - WBAP News/Talk [Last Updated On: March 23rd, 2020] [Originally Added On: March 23rd, 2020]
- Study shows similarity in anti-VEGF injection intervals for wet AMD - Ophthalmology Times [Last Updated On: March 25th, 2020] [Originally Added On: March 25th, 2020]
- aTyr Pharma and its Hong Kong Subsidiary, Pangu BioPharma, Announce Government Grant to Fund Bispecific Antibody Development Platform - BioSpace [Last Updated On: March 25th, 2020] [Originally Added On: March 25th, 2020]
- Health researchers find solution to life-threatening side effect - Mirage News [Last Updated On: March 25th, 2020] [Originally Added On: March 25th, 2020]
- European Vascular Biology Organisation | Advancing human ... [Last Updated On: March 25th, 2020] [Originally Added On: March 25th, 2020]
- Vascular Biology Program | Boston Children's Hospital [Last Updated On: March 25th, 2020] [Originally Added On: March 25th, 2020]
- Vascular Biology Research Program | Johns Hopkins ... [Last Updated On: March 25th, 2020] [Originally Added On: March 25th, 2020]
- Anatomy of a heatwave: how Antarctica recorded a 20.75C day last month - The Conversation AU [Last Updated On: April 1st, 2020] [Originally Added On: April 1st, 2020]
- Who is Sir Patrick Vallance and is he speaking at todays government coronavirus press briefing? - The Sun [Last Updated On: April 1st, 2020] [Originally Added On: April 1st, 2020]
- Meso-Erythritol Market Global Analysis and Future Forecast to 2026 (Based on 2020 COVID-19 Worldwide Spread) - Jewish Life News [Last Updated On: April 28th, 2020] [Originally Added On: April 28th, 2020]