LYSOGENE, UMM and AU Collaborate To Develop IND-supporting Preclinical Studies In GM1-gangliosidosis

Posted: Published on February 12th, 2015

This post was added by Dr P. Richardson

Collaboration entails development of gene therapy treatment for severe neurodegenerative disease GM1-gangliosidosis

LYSOGENE, a leading, clinical stage gene therapy biotechnology company committed to the development and commercialization of breakthrough treatments for severe orphan pathologies affecting the central nervous system (CNS), recently announced that it has entered into a strategic collaboration with the University of Massachusetts Medical School (UMMS) in Worcester, Massachusetts, and Auburn University (AU) in Auburn, Alabama. Through the collaboration, LYSOGENE, UMMS and AU will develop IND-supporting preclinical studies in GM1-gangliosidosis, a rare, inherited disorder characterized by severe neurological impairment, using adeno-associated virus (AAV) gene therapy technology.

The collaboration will combine LYSOGENEs outstanding translational and clinical expertise in gene therapy for CNS disorders with the unique preclinical expertise and infrastructure of UMMS and AU to design and test innovative AAV-based gene therapy approaches to treat GM1-gangliosidosis.

The development of a potential treatment for GM1-gangliosidosis using AAV gene therapy was initiated in 2005 by Miguel Sena-Esteves, PhD, associate professor in the Neurology Department and the Gene Therapy Center at UMMS, and Douglas R. Martin, PhD, associate professor in the Scott-Ritchey Research Center and Department of Anatomy, Physiology & Pharmacology at AU. The approach developed by the investigators uses AAV vectors to treat the entire brain and spinal cord after injection of only a few intracranial sites. Preclinical studies demonstrated a remarkable extension in lifespan from 8 months in untreated GM1 cats to greater than 4.5 years in AAV-treated cats, with dramatic improvements in quality of life. Results were published in Science Translational Medicine in 2014 (McCurdy, V.J., et al., Sustained normalization of neurological disease after intracranial gene therapy in a feline model. Science Translational Medicine, 2014. 6(231): p. 231ra48).

We are thrilled by our collaboration with University of Massachusetts Medical School and Auburn University, which constitutes a significant step towards the development of a treatment for patients affected with GM1-gangliosidosis, a severely debilitating disease. For each of these patients and their families, there is currently no option and an urgent need for a safe and effective therapy, said Karen Aiach, founding president and CEO of LYSOGENE. AAV-based therapies are particularly suitable for inherited disorders of the CNS. In this new program, LYSOGENE will leverage its unique capacity to develop these therapies and bring them to patients with unmet needs. We will also reinforce our scientific and technology base through our collaboration with leaders in the field.

Collaborating with LYSOGENE will allow us to leverage their clinical and translational expertise and advance the development of a gene transfer therapy for treating patients affected with GM1-gangliosidosis, said Sena-Esteves. In our minds, what ultimately matters is the ability to deliver a potential treatment to the children suffering from this horrible disease. Ultimately, thats what drives us all.

About Gangliosidosis with GM1 GM1-gangliosidosis is a rare inherited neurodegenerative disorder characterized by severe cognitive and motor developmental delays resulting in death of most patients at a very young age.

It is caused by mutations in the GLB1 gene, which encodes an enzyme called beta-galactosidase necessary for recycling of a molecule (GM1-ganglioside) in neurons. This brain lipid is indispensable for normal function, but its overabundance causes neurodegeneration, resulting in the severe neurological symptoms of GM1-gangliosidosis.

GM1 affects 1 in 100,000 - 200,000 newborns and is inherited in an autosomal recessive pattern. GM1-gangliosidosis can be classified into three major clinical phenotypes according to the age of onset and severity of symptoms: Type I (infantile), Type II (late infantile/juvenile) and Type III (adult). There is currently no treatment for this disease.

About LYSOGENE LYSOGENE is a clinical stage biotechnology company committed to the development and commercialization of innovative therapies for patients affected with rare disorders and high unmet medical needs. LYSOGENEs team translated its rAAVrh10 lead product for Sanfilippo from bench to bedside in an unprecedented fashion over the last years. Its lead product is for Sanfilippo syndrome, a neurodegenerative lysosomal storage disorder considered to be a perfect model for gene therapy. LYSOGENE is currently expanding its pipeline to additional diseases with high unmet medical needs. Lysogene was launched in 2009. It completed a Series A financing in May 2014 with leading life sciences investors Sofinnova Partners, BPI Innobio and Novo AIS.

View original post here:
LYSOGENE, UMM and AU Collaborate To Develop IND-supporting Preclinical Studies In GM1-gangliosidosis

Related Posts
This entry was posted in Gene Therapy. Bookmark the permalink.

Comments are closed.