Summary Top of page Summary Introduction Extracellular vesicles produced by stem cells What we have learned from mature liver cell transplantation in humans? MSCs in human clinical applications Disclosure of Conflict of Interests References
Hemophilia remains a non-curative disease, and patients are constrained to undergo repeated injections of clotting factors. In contrast, the sustained production of endogenous factors VIII (FVIII) or IX (FIX) by the patient's own cells could represent a curative treatment. Gene therapy has thus provided new hope for these patients. However, the issues surrounding the durability of expression and immune responses against gene transfer vectors remain. Cell therapy, involving stem cells expanded invitro, can provide de novo protein synthesis and, if implanted successfully, could induce a steady-state production of low quantities of factors, which may keep the patient above the level required to prevent spontaneous bleeding. Liver-derived stem cells are already being assessed in clinical trials for inborn errors of metabolism and, in view of their capacity to produce FVIII and FIX in cell culture, they are now also being considered for clinical application in hemophilia patients.
Hemophilia A is the most common severe inherited bleeding disorder, affecting 1 in 5000 male births. This pathology exhibits different phenotypic expressions depending on its associated factor VIII (FVIII) plasma levels, resulting in severe (<1%), moderate (15%), or mild (630%) forms of expression [1]. This disease originates from an inherited deficiency or dysfunction in the procoagulant FVIII, a crucial element of the intrinsic pathway of blood coagulation involved in the conversion of factor X to Xa [2]. In severe cases, FVIII deficiency leads to spontaneous bleeding and internal hemorrhage that can cause disability and even death, if left untreated [3].
There is currently no cure for hemophilia A. The rationale behind replacement treatment is to sufficiently increase concentrations of the missing factor to arrest spontaneous and traumatic bleeds. Plasma-derived products became available in the 1970s, proving effective in controlling bleeding episodes through the development of home-therapy programs. However, concentrates derived from pooled plasma were contaminated with HIV and the hepatitis B or C virus, causing post-transfusion hepatitis and immunodeficiency in almost all hemophilia patients who received these concentrates. In 1984, the FVIII gene was successfully cloned, enabling the production of recombinant human FVIII (rFVIII) using mammalian cell cultures, and the first rFVIII went on the market in 1992 [4].
The introduction of rFVIII revolutionized hemophilia patient management by providing an effective and safe treatment of bleeding episodes. Nevertheless, there remain several issues concerning FVIII replacement therapy that have yet to be resolved. The primary complications are as follows: the short half-life of replacement products, necessitating frequent intravenous infusions; the immunogenicity of FVIII concentrates; and the affordability and availability of FVIII products [5].
During the last decades, several attempts have been made to develop a long-term cure, such as gene and cell therapy. Hemophilia A is a perfect candidate for gene therapy, given its monogenetic nature that can potentially be cured by continuous endogenous FVIII expression. For hemophilia treatment, by increasing circulating clotting factor levels to above 1% of normal, it may be possible to obtain a prophylactic therapeutic effect, thereby reducing risks of both mortality and morbidity.
If gene therapy is able to slightly increase clotting factor levels, it could significantly improve the clinical phenotype [6]. Recently, hemophilia B gene therapy has achieved promising outcomes in human clinical trials [7]. A key advantage of the development of gene therapy strategies for hemophilia B is the relatively small size of the cDNA of FIX, measuring approximately 1.4 kB of the coding sequence. This renders it amenable to insertion into different gene transfer vectors and enables the addition of numerous transcriptional regulatory elements to both improve and restrict transgene expression in selected cell types. The cDNA of FVIIIis much larger than that ofFIX (>8kB) and cannot be as readily accommodated in gene transfer vectors. Several strategies have previously been attempted to overcome this difficulty, by either deleting the B-domain or using two viral vectors [8].
Moreover, the main complication of viral vector delivery of clotting factor transgenes is the host immune responses [9]. A pre-existing immune response against capsid proteins is one of the criteria excluding hemophilia patients from gene therapy. Approximately 40% of the adult human population possess neutralizing antibodies against the adeno-associated virus (AAV)-2 [10], and these antibodies can cross-neutralize other AAV serotypes. In addition, patients receiving systemic viral vector administration develop a postgene therapy immune response. This response was shown to be associated with the destruction of cells expressing viral proteins after transduction, thereby decreasing the gene transfer's efficacy, along with the development of neutralizing antibodies against the viral vector employed as therapeutic agent, therefore preventing the possibility of vector re-administration.
Orthotopic liver transplantation has proven effective in correcting the hemophilic phenotype in hemophilia patients with decompensated hepatitis C (HCV)-cirrhosis [11]. This suggests that the liver plays a central role in producing blood-clotting factors like FVIII. The hepatic cellular compartments that produce FVIII are primarily composed of liver sinusoidal endothelial cells (LSEC) [12, 13], although earlier evidence has suggested hepatocytes to be instrumental in FVIII expression [14]. Transplanting such cells that are capable of releasing FVIII insitu or into the circulation is an attractive approach for treating clotting factor disorders. Notably, in murine endothelial cell cultures, FVIII production was measured to amount to 0.07IUmillion1 cellsday1. If we extrapolate this to the 81010 liver endothelial cells contained in an adult human liver, the production would cover more than that required by a human adult [15]. Transplanting 2106 mature LSECs, representing 10% of their endothelial compartment, via the portal vein in hemophilia A mice was shown to restore plasma FVIII activity levels to 14%25% of normal, thereby correcting spontaneous bleeding [16].
In addition to endothelial cells, mesenchymal stem cells (MSCs) are also able to secrete FVIII in the cell culture supernatant, which makes them attractive candidates for treating hemophilia. MSCs are increasingly used in several medical areas for repairing organs, such as the heart, bone, cartilage, and liver. These are tissue-resident cells that can be obtained from different tissues and organs, exhibiting the propensity to attach onto surfaces and proliferate invitro. In certain conditions, they differentiate into mature cells, such as bone, cartilage, and adipocyte- or hepatocyte-like cells. These cells express specific surface markers,
such as CD90 and CD105, and are negative for hematopoietic markers like CD45 [17]. However, MSC from different tissues may differ by other characteristics. For example, unmodified MSCs from human liver and lungs produce FVIII in the culture supernatant in much higher quantities compared to human bone marrow-derived MSCs (1.2 and 1.7% vs. 0.12%, respectively, per 105 cells at the 48-h time point) [18].
Go here to read the rest:
Mesenchymal stem cell treatment for hemophilia: a review ...
- More Stem Cells Extracted For Later Use For My MS [Last Updated On: March 14th, 2011] [Originally Added On: March 14th, 2011]
- Stem Cell Institute Panama City Panama [Last Updated On: April 1st, 2011] [Originally Added On: April 1st, 2011]
- Cells That Heal Us From Cradle To Grave: A Quantum Leap in Medical Science [Last Updated On: April 8th, 2011] [Originally Added On: April 8th, 2011]
- Macular Degeneration Improved With Stem Cells [Last Updated On: April 8th, 2011] [Originally Added On: April 8th, 2011]
- Stem Cell Therapy for Kidney Failure [Last Updated On: April 15th, 2011] [Originally Added On: April 15th, 2011]
- SIRA: Could Stem Cell Therapy Renew Your Body Cells? [Last Updated On: April 22nd, 2011] [Originally Added On: April 22nd, 2011]
- Stem Cell Therapy for Autism [Last Updated On: May 20th, 2011] [Originally Added On: May 20th, 2011]
- Stem Cell Therapy for Critical Limb Ischemia [Last Updated On: May 21st, 2011] [Originally Added On: May 21st, 2011]
- STEM CELLS FOR MACULAR DEGENERATION Sam Smith's story.wmv [Last Updated On: May 21st, 2011] [Originally Added On: May 21st, 2011]
- Stem Cell Therapy Success [Last Updated On: May 21st, 2011] [Originally Added On: May 21st, 2011]
- Doctors Use Stem Cells to Grow New Windpipes [Last Updated On: May 21st, 2011] [Originally Added On: May 21st, 2011]
- Dog Undergoes Stem Cell Therapy [Last Updated On: May 23rd, 2011] [Originally Added On: May 23rd, 2011]
- Stem Cell Therapy for Multiple Sclerosis [Last Updated On: May 23rd, 2011] [Originally Added On: May 23rd, 2011]
- Dogs now getting stem cell therapy [Last Updated On: May 24th, 2011] [Originally Added On: May 24th, 2011]
- Stem Cell Therapy for Rheumatoid Arthritis [Last Updated On: May 30th, 2011] [Originally Added On: May 30th, 2011]
- Stem Cell Therapy for Type II Diabetes [Last Updated On: May 31st, 2011] [Originally Added On: May 31st, 2011]
- Stem Cell Therapy for Cerebral Palsy [Last Updated On: May 31st, 2011] [Originally Added On: May 31st, 2011]
- Visions Episode 92: Stem Cells Discovery [Last Updated On: May 31st, 2011] [Originally Added On: May 31st, 2011]
- Stem Cell Therapy For Alzheimer's/Dementia [Last Updated On: June 1st, 2011] [Originally Added On: June 1st, 2011]
- Stem Cell Patient Richard H. MS Treatment [Last Updated On: June 10th, 2011] [Originally Added On: June 10th, 2011]
- Stem Cell Therapy Injections [Last Updated On: June 12th, 2011] [Originally Added On: June 12th, 2011]
- Stem Cells Used to Grow Windpipes [Last Updated On: June 20th, 2011] [Originally Added On: June 20th, 2011]
- Stem Cell Therapy for Stroke - Gary Steinberg, Stanford University [Last Updated On: June 21st, 2011] [Originally Added On: June 21st, 2011]
- Lou Gehrig's Disease (ALS): UCSD Team's Stem Cell Therapy Approach [Last Updated On: June 23rd, 2011] [Originally Added On: June 23rd, 2011]
- Stem Cell Therapy Cream: Less Wrinkles In 30 Days or Less Anti-Wrinkle Cream That Works [Last Updated On: June 26th, 2011] [Originally Added On: June 26th, 2011]
- Stem Cell Therapy for Spinal Cord Injury - Injured Airline Pilot Flies Again [Last Updated On: June 27th, 2011] [Originally Added On: June 27th, 2011]
- Clinical Advances in Adult Stem Cell Therapy: Dr. Jorge Paz [Last Updated On: June 27th, 2011] [Originally Added On: June 27th, 2011]
- Stem Cell Injection Treatment - Stem Cell Therapy [Last Updated On: June 27th, 2011] [Originally Added On: June 27th, 2011]
- Stem Cell Therapy MS: Sam Harrell and The Superbowl [Last Updated On: June 27th, 2011] [Originally Added On: June 27th, 2011]
- Documentary: Stem Cell Therapy for Muscular Dystrophy - Ryan Benton's Story [Last Updated On: June 30th, 2011] [Originally Added On: June 30th, 2011]
- Stem Cell Therapy--Hillcrest Animal Hospital [Last Updated On: July 14th, 2011] [Originally Added On: July 14th, 2011]
- WAVE3 News Adipose Stem Cell Therapy [Last Updated On: July 20th, 2011] [Originally Added On: July 20th, 2011]
- Lou Gehrig's Disease (ALS): Stem Cell Therapy - A Patient's Perspective [Last Updated On: July 23rd, 2011] [Originally Added On: July 23rd, 2011]
- University of Melbourne announce Stem Cells Discovery [Last Updated On: July 28th, 2011] [Originally Added On: July 28th, 2011]
- Stem Cell Therapy (Regenerative Medicine) in New Jersey [Last Updated On: August 9th, 2011] [Originally Added On: August 9th, 2011]
- Spinal Cord Injury - Stem Cell Therapy [Last Updated On: August 9th, 2011] [Originally Added On: August 9th, 2011]
- Dr. Craig Saunders Adult Stem Cell Therapy [Last Updated On: August 9th, 2011] [Originally Added On: August 9th, 2011]
- Embryonic stem cell therapy in China (www.esctherapy.com) [Last Updated On: August 13th, 2011] [Originally Added On: August 13th, 2011]
- Mesenchymal stem cells and marrow stromal cells [Last Updated On: August 15th, 2011] [Originally Added On: August 15th, 2011]
- Mesenchymal Stem Cells in Regenerative Medicine: Of Hopes and Challenges [Last Updated On: August 15th, 2011] [Originally Added On: August 15th, 2011]
- Cardiomyogenic differentiation of Mesenchymal Stem cells (KUM2/9-15c) [Last Updated On: August 15th, 2011] [Originally Added On: August 15th, 2011]
- SENS4 - Engineered Mesenchymal Stem Cells - The Road to Skeletal Tissue Regeneration (1/3) [Last Updated On: August 15th, 2011] [Originally Added On: August 15th, 2011]
- Mesenchymal stem cells and marrow stromal cells---2nd--- [Last Updated On: August 15th, 2011] [Originally Added On: August 15th, 2011]
- Cadiomyogenesis of human mesenchymal stem cells [Last Updated On: August 15th, 2011] [Originally Added On: August 15th, 2011]
- Mesenchymal Stem Cells Transplantation In Heart.wmv [Last Updated On: August 15th, 2011] [Originally Added On: August 15th, 2011]
- Ying Liu discusses IPS cell therapy for ALS [Last Updated On: August 15th, 2011] [Originally Added On: August 15th, 2011]
- Non-controversial Stem Cells: Rationale for Clinical Use: Neil Riordan, Ph.D. - Miami, FL [Last Updated On: August 16th, 2011] [Originally Added On: August 16th, 2011]
- From Surgical Repair to Stem Cell Repair: A Surgeon's Journey by Leonard Smith MD, FACS [Last Updated On: August 16th, 2011] [Originally Added On: August 16th, 2011]
- Bone Marrow Aspiration - Stem Cell Therapy [Last Updated On: August 16th, 2011] [Originally Added On: August 16th, 2011]
- Non-controversial Stem Cells: Rationale for Clinical Use - Dr. Neil Riordan [Last Updated On: August 16th, 2011] [Originally Added On: August 16th, 2011]
- TEDxSingapore - Susan Lim - Hype and hope of stem cell research [Last Updated On: August 16th, 2011] [Originally Added On: August 16th, 2011]
- Cryo-Lip Instruction Video.VOB.flv [Last Updated On: August 16th, 2011] [Originally Added On: August 16th, 2011]
- Stem Cells Repair Damaged Heart [7-07-2011] [Last Updated On: August 16th, 2011] [Originally Added On: August 16th, 2011]
- Andalusian Stem Cell Bank [Last Updated On: August 16th, 2011] [Originally Added On: August 16th, 2011]
- Adult Stem Cell Therapy Clinical Advances - Dr. Jorge Paz in San Diego, CA March 2011 [Last Updated On: August 16th, 2011] [Originally Added On: August 16th, 2011]
- Mesenchymal Stem Cells Drive New MS Study/Treatment [Last Updated On: August 26th, 2011] [Originally Added On: August 26th, 2011]
- Sims 2 Mafia Story Part 7 - Farewell, Godfather/Stem Cell Medicine [Last Updated On: August 28th, 2011] [Originally Added On: August 28th, 2011]
- STEM CELLS - Mesenchymal Stem Cells (Balzitt).flv [Last Updated On: August 30th, 2011] [Originally Added On: August 30th, 2011]
- Regenerative Medicine With Stem Cell Therapy Injections at an Arizona pain clinic (602) 507-6550 [Last Updated On: September 3rd, 2011] [Originally Added On: September 3rd, 2011]
- Stem Cell Research: Huntington's Disease [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Autism Stem Cell Trip [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Before/After Stem Cell for COPD: From Unable to Walk, to Dancing at My Daughter's Wedding [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Regenerative Medicine with Placenta Extracts and Stem Cell Therapies - Dr. Janethy Balakrishnan [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Stem Cells [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- The Politics and Promise of Stem Cell Research [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Stem cell therapy in Guatemala - (closer than China) [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- Stem Cell Therapy for Cerebral Palsy - Holly Catalano [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- Clinical Advances in Adult Stem Cell Therapy - Dr. Jorge Paz Rodriguez (Miami) [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- CryoLip Stem Cell Preservation [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- Dr. Gonzalez tells his story of Stem Cell Treatment and Stem Cell Therapy [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- A Three Minute Cell Passage [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Bone Marrow - Stem Cell Prolotherapy [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Stem Cell Therapy- Interview with Indian Surgeon [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- Cryo-Lip.f4v [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- CryoCord Corporate Video (2 Mins) [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- SENS4 - Engineered Mesenchymal Stem Cells - The Road to Skeletal Tissue Regeneration (3/3) [Last Updated On: September 23rd, 2011] [Originally Added On: September 23rd, 2011]
- What are stem cells? [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- Dental stem cell bank in Hyderabad [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- Stem Cell Therapeutics: Tissue Regeneration - Christopher J. Centeno, MD [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]
- Stem Cell Types and Sources [Last Updated On: September 25th, 2011] [Originally Added On: September 25th, 2011]