Method makes it easier to separate useful stem cells from 'problem' ones for therapies

Posted: Published on April 23rd, 2013

This post was added by Dr. Richardson

Public release date: 22-Apr-2013 [ | E-mail | Share ]

Contact: Shaun Mason smason@mednet.ucla.edu 310-206-2805 University of California - Los Angeles

Pluripotent stem cells can turn, or differentiate, into any cell type in the body, such as nerve, muscle or bone, but inevitably some of these stem cells fail to differentiate and end up mixed in with their newly differentiated daughter cells.

Because these remaining pluripotent stem cells can subsequently develop into unintended cell types bone cells among blood, for instance or form tumors known as teratomas, identifying and separating them from their differentiated progeny is of utmost importance in keeping stem cellbased therapeutics safe.

Now, UCLA scientists have discovered a new agent that may be useful in strategies to remove these cells. Their research was published online April 15 in the journal Developmental Cell and will appear in an upcoming print edition of the journal.

The study was led by Carla Koehler, a professor of chemistry and biochemistry at UCLA, and Dr. Michael Teitell, a UCLA professor of pathology and pediatrics. Both are members of the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at UCLA and UCLA's Jonsson Comprehensive Cancer Center.

In work using the single-celled microorganism known as baker's yeast, or Saccharomyces cerevisiae, as a model system, Koehler, Teitell and their colleagues had discovered a molecule called MitoBloCK-6, which inhibits the assembly of cells' mitochondria the energy-producing "power plants" that drive most cell functions. The research team then tested the molecule in a more complex model organism, the zebrafish, and demonstrated that MitoBloCK-6 blocked cardiac development.

However, when the scientists introduced MitoBloCK-6 to differentiated cell lines, which are typically cultured in the lab, they found that the molecule had no effect at all. UCLA postdoctoral fellow Deepa Dabir tested the compound on many differentiated lines, but the results were always the same: The cells remained healthy.

"I was puzzled by this result, because we thought this pathway was essential for all cells, regardless of differentiation state," Koehler said.

The team then decided to test MitoBloCK-6 on human pluripotent stem cells. Postdoctoral fellow Kiyoko Setoguchi showed that MitoBloCK-6 caused the pluripotent stem cells to die by triggering apoptosis, a process of programmed cell suicide.

See the rest here:
Method makes it easier to separate useful stem cells from 'problem' ones for therapies

This entry was posted in Uncategorized. Bookmark the permalink.

Comments are closed.