Reviving drugs with anti-stroke potential, minus side effects

Posted: Published on February 28th, 2015

This post was added by Dr Simmons

In the 1990s, neuroscientists identified a class of drugs that showed promise in the area of stroke. NMDA receptor antagonists could limit damage to the brain in animal models of stroke. But one problem complicated testing the drugs in a clinical setting: the side effects included disorientation and hallucinations.

Now researchers have found a potential path around this obstacle. The results were published in Neuron.

"We have found neuroprotective compounds that can limit damage to the brain during ischemia associated with stroke and other brain injuries, but have minimal side effects," says senior author Stephen Traynelis, PhD, professor of pharmacology at Emory University School of Medicine.

"These compounds are most active when the pH is lowered by biochemical processes associated with injury of the surrounding tissue. This is a proof of concept study that shows this mechanism of action could potentially be exploited clinically in several conditions, such as stroke, traumatic brain injury and subarachnoid hemorrhage."

In a mouse model of ischemic stroke, a NMDA receptor antagonist called 93-31 can reduce the volume of damaged brain tissue by more than half, researchers found. At the same time, giving mice 93-31 does not seem to lead to the side effects seen with other NMDA receptor antagonists.

The drugs phencyclidine (also known as PCP) and ketamine are NMDA receptor antagonists; their ability to block all subtypes of NMDA receptors is thought to account for their psychoactive side effects. NMDA receptors are abundant on the surfaces of brain cells and play key roles in healthy processes such as memory formation.

In brain tissue affected by stroke or traumatic injury, the environment becomes more acidic because of the lack of oxygen and the buildup of metabolites such as lactic acid. In addition, NMDA receptors get overstimulated by an increase in the neurotransmitter glutamate -- enough to kill cells. Researchers reasoned that NMDA receptor antagonists whose activity is dependent on acidic conditions should, at the right dose, be active only in the injured areas of the brain.

To identify the new pH-dependent drugs, Emory pharmacologists led by Traynelis and Ray Dingledine, PhD collaborated with chemists Dennis Liotta, PhD and James Snyder, PhD. The co-first authors of the Neuron paper are pharmacology instructor Hongjie Yuan PhD, chemistry postdoctoral fellow Gordon Wells, PhD and Scott Myers, PhD, director of drug discovery at Atlanta-based pharmaceutical company NeurOp.

In medicinal chemistry terms, 93-31 is ten times more potent at pH 6.9, typical for ischemic tissue with an insufficient blood supply, than at pH 7.6, close to the value for healthy brain tissue.

In collaboration with Katherine Nicholson, PhD at Virginia Commonwealth University, the researchers tested 93-31 on mice trained to press a lever when they detect low levels of PCP. When researchers substituted 93-31 for PCP, the mice did not perceive 93-31's subjective effects to be similar enough to PCP's to respond by pressing levers in the same way.

View original post here:
Reviving drugs with anti-stroke potential, minus side effects

Related Posts
This entry was posted in Brain Injury Treatment. Bookmark the permalink.

Comments are closed.