Spinal Cord Injury: Emerging Concepts: National Institute of …

Posted: Published on November 23rd, 2013

This post was added by Dr Simmons

September 30 - October 1, 1996

Table of Contents:

Top

Among the most exciting frontiers in medicine is the repair of traumatic injuries to the spinal cord. Improvements in treatment are helping many more people survive spinal cord injury. Yet most spinal cord injuries still cause lifelong disability, and continued research is critically needed. To explore new directions for research on spinal cord injury, the National Institutes of Health sponsored a scientific workshop on September 30 - October 1, 1996. The workshop, Spinal Cord Injury: Emerging Concepts, brought together experts from the field of spinal cord injury research and leaders from other fields such as development, immunology, and stroke.

The normal spinal cord coordinates movement and sensation in the body. It is a complex organ containing nerve cells, supporting cells, and nerve fibers to and from the brain. The spinal cord is arranged in segments, with higher segments controlling movement and sensation in upper parts of the body and lower segments controlling the lower parts of the body. The consequences of injury reflect this organization.

The types of disability associated with spinal cord injury vary greatly depending on the type and severity of the injury, the level of the cord at which the injury occurs, and the nerve fiber pathways that are damaged. Severe injury to the spinal cord causes paralysis and complete loss of sensation to the parts of the body controlled by the spinal cord segments below the point of injury. Spinal cord injuries also can lead to many complications, including pressure sores and increased susceptibility to respiratory diseases.

Clinical management of spinal cord injury has advanced greatly in the last 50 years. Recent advances include improved imaging of damage to the spinal cord and vertebrae and development of the first effective drug therapy for use in the hours just after injury. Current management of acute spinal cord injury involves diagnosing and relieving gross misalignments and other structural problems of the spine, minimizing cellular-level damage, and stabilizing the vertebrae to prevent further injury. Once a patient is stabilized, supportive care and rehabilitation strategies promote long-term recovery.

Damage to the spinal cord does not stop immediately after the initial injury, but continues in the hours following trauma. These delayed injury processes present windows of opportunity for treatments aimed at reducing the extent of disability resulting from spinal cord injury.

Most types of immune cells enter the spinal cord only rarely. However, when the spinal cord is damaged by trauma or disease, immune cells engulf the area, eliminating debris and releasing a host of powerful regulatory chemicals, both beneficial and harmful. Scientists know little about the role of these immune cells after spinal cord injury.

Following spinal cord injury, highly reactive chemicals called oxidants or "free radicals" are released. These chemicals attack the body's natural defenses and critical cell structures. Trauma also causes release of excess neurotransmitters, leading to excitotoxicity, or secondary damage from overexcited nerve cells. Understanding how to block oxidative damage and excitotoxicity may provide avenues for reducing damage following spinal cord injury.

Continue reading here:
Spinal Cord Injury: Emerging Concepts: National Institute of ...

Related Posts
This entry was posted in Spinal Cord Injury Treatment. Bookmark the permalink.

Comments are closed.