Spinal cord – Wikipedia, the free encyclopedia

Posted: Published on December 6th, 2013

This post was added by Dr Simmons

Divisions of Spinal Segments Segmental Spinal Cord Level and Motor Function Level Motor Function C1-C6 Neck flexors C1-T1 Neck extensors C3, C4, C5 Supply diaphragm (mostly C4) C5, C6 Shoulder movement, raise arm (deltoid); flexion of elbow (biceps); C6 externally rotates the arm (supinates) C6, C7 Extends elbow and wrist (triceps and wrist extensors); pronates wrist C7, T1 Flexes wrist C7, T1 Supply small muscles of the hand T1 -T6 Intercostals and trunk above the waist T7-L1 Abdominal muscles L1, L2, L3, L4 Thigh flexion L2, L3, L4 Thigh adduction L4, L5, S1 Thigh abduction L5, S1, S2 Extension of leg at the hip (gluteus maximus) L2, L3, L4 Extension of leg at the knee (quadriceps femoris) L4, L5, S1, S2 Flexion of leg at the knee (hamstrings) L4, L5, S1 Dorsiflexion of foot (tibialis anterior) L4, L5, S1 Extension of toes L5, S1, S2 Plantar flexion of foot L5, S1, S2 Flexion of toes

The spinal cord is a long, thin, tubular bundle of nervous tissue and support cells that extends from the brain (the medulla oblongata specifically). The brain and spinal cord together make up the central nervous system (CNS). The spinal cord begins at the occipital bone and extends down to the space between the first and second lumbar vertebrae; it does not extend the entire length of the vertebral column. It is around 45cm (18in) in men and around 43cm (17in) long in women. Also, the spinal cord has a varying width, ranging from 1/2inch thick in the cervical and lumbar regions to 1/4inch thick in the thoracic area. The enclosing bony vertebral column protects the relatively shorter spinal cord. The spinal cord functions primarily in the transmission of neural signals between the brain and the rest of the body but also contains neural circuits that can independently control numerous reflexes and central pattern generators. The spinal cord has three major functions: as a conduit for motor information, which travels down the spinal cord, as a conduit for sensory information in the reverse direction, and finally as a center for coordinating certain reflexes. [1]

The spinal cord is the main pathway for information connecting the brain and peripheral nervous system. The length of the spinal cord is much shorter than the length of the bony spinal column. The human spinal cord extends from the foramen magnum and continues through to the conus medullaris near the second lumbar vertebra, terminating in a fibrous extension known as the filum terminale.

It is about 45cm (18in) long in men and around 43cm (17in) in women, ovoid-shaped, and is enlarged in the cervical and lumbar regions. The cervical enlargement, located from C3 to T2 spinal segments, is where sensory input comes from and motor output goes to the arms. The lumbar enlargement, located between L1 and S3 spinal segments, handles sensory input and motor output coming from and going to the legs.

The spinal cord is protected by three layers of tissue, called spinal meninges, that surround the canal. The dura mater is the outermost layer, and it forms a tough protective coating. Between the dura mater and the surrounding bone of the vertebrae is a space called the epidural space. The epidural space is filled with adipose tissue, and it contains a network of blood vessels. The arachnoid mater is the middle protective layer. Its name comes from the fact that the tissue has a spiderweb-like appearance. The space between the arachnoid and the underlying pia mater is called the subarachnoid space. The subarachnoid space contains cerebrospinal fluid (CSF). The medical procedure known as a lumbar puncture (or "spinal tap") involves use of a needle to withdraw cerebrospinal fluid from the subarachnoid space, usually from the lumbar region of the spine. The pia mater is the innermost protective layer. It is very delicate and it is tightly associated with the surface of the spinal cord. The cord is stabilized within the dura mater by the connecting denticulate ligaments, which extend from the enveloping pia mater laterally between the dorsal and ventral roots. The dural sac ends at the vertebral level of the second sacral vertebra.

In cross-section, the peripheral region of the cord contains neuronal white matter tracts containing sensory and motor neurons. Internal to this peripheral region is the gray, butterfly-shaped central region made up of nerve cell bodies. This central region surrounds the central canal, which is an anatomic extension of the spaces in the brain known as the ventricles and, like the ventricles, contains cerebrospinal fluid.

The spinal cord has a shape that is compressed dorso-ventrally, giving it an elliptical shape. The cord has grooves in the dorsal and ventral sides. The posterior median sulcus is the groove in the dorsal side, and the anterior median fissure is the groove in the ventral side.

The human spinal cord is divided into 31 different segments. At every segment, right and left pairs of spinal nerves (mixed; sensory and motor) form. Six to eight motor nerve rootlets branch out of right and left ventro lateral sulci in a very orderly manner. Nerve rootlets combine to form nerve roots. Likewise, sensory nerve rootlets form off right and left dorsal lateral sulci and form sensory nerve roots. The ventral (motor) and dorsal (sensory) roots combine to form spinal nerves (mixed; motor and sensory), one on each side of the spinal cord. Spinal nerves, with the exception of C1 and C2, form inside intervertebral foramen (IVF). Note that at each spinal segment, the border between the central and peripheral nervous system can be observed. Rootlets are a part of the peripheral nervous system.

In the upper part of the vertebral column, spinal nerves exit directly from the spinal cord, whereas in the lower part of the vertebral column nerves pass further down the column before exiting. The terminal portion of the spinal cord is called the conus medullaris. The pia mater continues as an extension called the filum terminale, which anchors the spinal cord to the coccyx. The cauda equina (horses tail) is the name for the collection of nerves in the vertebral column that continue to travel through the vertebral column below the conus medullaris. The cauda equina forms as a result of the fact that the spinal cord stops growing in length at about age four, even though the vertebral column continues to lengthen until adulthood. This results in the fact that sacral spinal nerves actually originate in the upper lumbar region. The spinal cord can be anatomically divided into 31 spinal segments based on the origins of the spinal nerves.

Each segment of the spinal cord is associated with a pair of ganglia, called dorsal root ganglia, which are situated just outside of the spinal cord. These ganglia contain cell bodies of sensory neurons. Axons of these sensory neurons travel into the spinal cord via the dorsal roots.

Continue reading here:
Spinal cord - Wikipedia, the free encyclopedia

Related Posts
This entry was posted in Spinal Cord Injury Treatment. Bookmark the permalink.

Comments are closed.